Fixexd point theory and applications | |
Split feasibility problems for total quasi-asymptotically nonexpansive mappings | |
Shih-sen Chang1  Lin Wang1  Yun-he Zhao1  Xiong Rui Wang2  | |
[1] College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, China;Department of Mathematics, Yibin University, Yibin, China | |
关键词: split feasibility problem; convex feasibility problem; total quasi-asymptotically nonexpansive mappings; demi-closeness; Opial condition; | |
DOI : 10.1186/1687-1812-2012-151 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
The purpose of this paper is to propose an algorithm for solving the split feasibility problems for total quasi-asymptotically nonexpansive mappings in infinite-dimensional Hilbert spaces. The results presented in the paper not only improve and extend some recent results of Moudafi [Nonlinear Anal. 74:4083-4087, 2011; Inverse Problem 26:055007, 2010], but also improve and extend some recent results of Xu [Inverse Problems 26:105018, 2010; 22:2021-2034, 2006], Censor and Segal [J. Convex Anal. 16:587-600, 2009], Censor et al. [Inverse Problems 21:2071-2084, 2005], Masad and Reich [J. Nonlinear Convex Anal. 8:367-371, 2007], Censor et al. [J. Math. Anal. Appl. 327:1244-1256, 2007], Yang [Inverse Problem 20:1261-1266, 2004] and others. MSC:47J05, 47H09, 49J25.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201904020165242ZK.pdf | 321KB | download |