期刊论文详细信息
Journal of vision
Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects
Scott N. J. Watamaniuk1  Zheng Ma2  Stephen J. Heinen3 
[1] Psychology Department, Wright State University, Dayton, OH, USA;Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA;The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
关键词: motion;    pursuit, smooth;    velocity;    eye;    perception;    motion perception;    saccades;    steady state;   
DOI  :  10.1167/17.12.20
学科分类:眼科学
来源: Association for Research in Vision and Ophthalmology
PDF
【 摘 要 】

When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902193996584ZK.pdf 807KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:4次