期刊论文详细信息
IEICE Electronics Express
An energy-efficient coarse grained spatial architecture for convolutional neural networks AlexNet
Ming Liu1  Mingjiang Wang1  Boya Zhao1 
[1] Harbin Institute of Technology
关键词: convolutional neural network;    accelerator;    AlexNet;   
DOI  :  10.1587/elex.14.20170595
学科分类:电子、光学、磁材料
来源: Denshi Jouhou Tsuushin Gakkai
PDF
【 摘 要 】

In this paper, we propose a CGSA (Coarse Grained Spatial Architecture) which processes different kinds of convolution with high performance and low energy consumption. The architecture’s 16 coarse grained parallel processing units achieve a peak 152 GOPS running at 500 MHz by exploiting local data reuse of image data, feature map data and filter weights. It achieves 99 frames/s on the convolutional layers of the AlexNet benchmark, consuming 264 mW working at 500 MHz and 1 V. We evaluated the architecture by comparing some recent CNN’s accelerators. The evaluation result shows that the proposed architecture achieves 3× energy efficiency and 3.5× area efficiency than existing work of the similar architecture and technology proposed by Chen.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902190066029ZK.pdf 3068KB PDF download
  文献评价指标  
  下载次数:19次 浏览次数:17次