期刊论文详细信息
Statistical Analysis and Data Mining
Panning for gold: Enhancing the precision of sensitivity test data
Hamada, Michael S.1  Collins, David H.1  Weaver, Brian P.1 
[1] Los Alamos National Laboratory Statistical Sciences Group Los Alamos New Mexico
关键词: binary regression;    data mining;    logistic;    penalized maximum likelihood;    precision;    probit;    sensitivity testing analysis;   
DOI  :  10.1002/sam.11345
学科分类:社会科学、人文和艺术(综合)
来源: John Wiley & Sons, Inc.
PDF
【 摘 要 】

Sensitivity tests apply a range of stimulus values to experimental subjects and record binary responses in order to estimate the distribution of threshold values in the subject population, where thresholds delineate responses from nonresponses. In many applications, such as explosives engineering, individual tests are expensive and are conducted in small runs. Scarcity of data results in nonexistence of estimates, or estimates with low precision. We discuss various methods, such as combining test runs, covariate analysis, and penalized maximum likelihood, for enhancing precision and “mining more gold” from expensive test results.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902188769814ZK.pdf 51KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:12次