期刊论文详细信息
Archives of Metallurgy and Materials
Experimental and Thermodynamic Study of Selected in-Situ Composites from the Fe-Cr-Ni-Mo-C System
T. Tokarski1  M. Stepien1  G. Cios1  K. Wieczerzak2  P. Bala2  K. Gorecki2  R. Dziurka2 
[1] AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, ACADEMIC CENTRE FOR MATERIALS AND NANOTECHNOLOGY, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND;AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY, FACULTY OF METALS ENGINEERING AND INDUSTRIAL COMPUTER SCIENCE, AL. A. MICKIEWICZA 30, 30-059 KRAKOW, POLAND
关键词: Keywords: Fe-Cr-Ni-Mo-C;    in-situ composites;    intermetallic compounds;    dilatometry;    microstructure;   
DOI  :  10.1515/amm-2016-0205
学科分类:金属与冶金
来源: Akademia Gorniczo-Hutnicza im. Stanislawa Staszica / University of Mining and Metallurgy
PDF
【 摘 要 】

The aim of the study was to synthesize and characterize the selected in-situ composites from the Fe-Cr-Ni-Mo-C system, additionally strengthened by intermetallic compounds. The project of the alloys was supported by thermodynamic simulations using Calculation of Phase Diagram approach via Thermo-Calc. Selected alloys were synthesized in an arc furnace in a high purity argon atmosphere using a suction casting unit. The studies involved a range of experimental techniques to characterize the alloys in the as-cast state, including optical emission spectrometry, light microscopy, scanning electron microscopy, electron microprobe analysis, X-ray diffraction and microhardness tests. These experimental studies were compared with the Thermo-Calc data and high resolution dilatometry. The results of investigations presented in this paper showed that there is a possibility to introduce intermetallic compounds, such as χ and σ, through modification of the chemical composition of the alloy with respect to Nieq and Creq. It was found that the place of intermetallic compounds precipitation strongly depends on matrix nature. Results presented in this paper may be successfully used to build a systematic knowledge about the group of alloys with a high volume fraction of complex carbides, and high physicochemical properties, additionally strengthened by intermetallic compounds.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902186638255ZK.pdf 6289KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:6次