Bulletin of Materials Science | |
Fabrication of dye-sensitized solar cells with multilayer photoanodes of hydrothermally grown TiO$_2$ nanocrystals and P25 TiO$_2$ nanoparticles | |
关键词: Dye-sensitized solar cells; hydrothermal method; TiO$_2$ nanocrystals; multilayer photoanodes; energy conversion efficiency.; | |
学科分类:材料工程 | |
来源: Indian Academy of Sciences | |
【 摘 要 】
TiO$_2$ nanocrystals (NCs) with sizes around 20 nm were synthesized by hydrothermal method in acidic autoclaving pH. The hydrothermally grown TiO$_2$ NCs and P25 TiO$_2$ nanoparticles (NPs) were used in the preparationof two different pastes using different procedures. These pastes with different characteristics were separately deposited on FTO glass plates to form multilayer photoanodes of the dye-sensitized solar cells. The aim of this study was to search how a thin sub-layer of the hydrothermally grown TiO2 NCs in the photoanodes could improve the efficiency of TiO$_2$ P25-based solar cells. The highest efficiency of 6.5% was achieved for a cell with a photoanodecomposed of one transparent sub-layer of hydrothermally grown TiO$_2$ NCs and two over-layers of P25 NPs. Higher energy conversion efficiencies were also attainable using two transparent sub-layers of hydrothermally grown TiO$_2$ NCs. In this case, an efficiency of 7.2% was achieved for a cell with a photoelectrode made of one over-layer of P25 TiO$_2$ NPs. This could show an increase of about 30% in the efficiency compared to the similar cell with a photoanode made of two layers of hydrothermally grown TiO2 NCs.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902183357560ZK.pdf | 703KB | download |