期刊论文详细信息
International Journal of Advanced Robotic Systems
Flexible Structural Design for Side-Sliding Force Reduction for a Caterpillar Climbing Robot
关键词: Flexible structure;    climbing robot;    natural rubber;   
DOI  :  10.5772/53491
学科分类:自动化工程
来源: InTech
PDF
【 摘 要 】

Due to sliding force arising from the closed chain mechanism among the adhering points of a climbing caterpillar robot (CCR), a sliding phenomenon will happen at the adhering points, e.g., the vacuum pads or claws holding the surface. This sliding force makes the attachment of the climbing robot unsteady and reducesthe motion efficiency. According to the new bionic research on the soft-body structure of caterpillars, some flexible structures made of natural rubber bars are applied in CCRs correspondingly as an improvement to the old rigid mechanical design of the robotic structure. This paper firstly establishes the static model of the sliding forces, the distortion of flexible bars and the driving torques of joints. Then, a method to reduce the sliding force by exerting a compensating angle to an active joint of the CCR is presented. The analyses and experimental results indicate that the flexible structure and the compensating angle method can reduce the sliding forces remarkably.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902180987471ZK.pdf 1808KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:11次