Applications of mathematics | |
The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type | |
关键词: finite volume method; nonlinear elliptic problem; local; global superconvergence in the $W^{1; \infty }$-norm; a posteriori error estimator; | |
DOI : | |
学科分类:应用数学 | |
来源: Akademie Ved Ceske Republiky | |
![]() |
【 摘 要 】
We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _{P\in S}|(\nabla u-\overline {\nabla }u_h)(P)|=O(h^2)\mathopen |\ln h|^{{3}/{2}}$, where $\overline {\nabla }$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\|u-u_h\|_1$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902027815076ZK.pdf | 298KB | ![]() |