期刊论文详细信息
Applications of mathematics
The gradient superconvergence of the finite volume method for a nonlinear elliptic problem of nonmonotone type
关键词: finite volume method;    nonlinear elliptic problem;    local;    global superconvergence in the $W^{1;    \infty }$-norm;    a posteriori error estimator;   
DOI  :  
学科分类:应用数学
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

We study the superconvergence of the finite volume method for a nonlinear elliptic problem using linear trial functions. Under the condition of $C$-uniform meshes, we first establish a superclose weak estimate for the bilinear form of the finite volume method. Then, we prove that on the mesh point set $S$, the gradient approximation possesses the superconvergence: $\max \nolimits _{P\in S}|(\nabla u-\overline {\nabla }u_h)(P)|=O(h^2)\mathopen |\ln h|^{{3}/{2}}$, where $\overline {\nabla }$ denotes the average gradient on elements containing vertex $P$. Furthermore, by using the interpolation post-processing technique, we also derive a global superconvergence estimate in the $H^1$-norm and establish an asymptotically exact a posteriori error estimator for the error $\|u-u_h\|_1$.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902027815076ZK.pdf 298KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:4次