期刊论文详细信息
Applications of mathematics
Determination of the unknown source term in a linear parabolic problem from the measured data at the final time
Kaya, Müjdat1 
关键词: inverse parabolic problem;    unknown source;    adjoint problem;    Fréchet derivative;    Lipschitz continuity;   
DOI  :  10.1007/s10492-014-0081-3
学科分类:应用数学
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

The problem of determining the source term $F(x,t)$ in the linear parabolic equation $u_t=(k(x)u_x(x,t))_x + F(x,t)$ from the measured data at the final time $u(x,T)=\mu (x)$ is formulated. It is proved that the Fréchet derivative of the cost functional $J(F) = \|\mu _T(x)- u(x,T)\|_{0}^2$ can be formulated via the solution of the adjoint parabolic problem. Lipschitz continuity of the gradient is proved. An existence result for a quasi solution of the considered inverse problem is proved. A monotone iteration scheme is obtained based on the gradient method. Convergence rate is proved.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902023462675ZK.pdf 221KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次