期刊论文详细信息
Applications of mathematics
Adaptive algorithm for stochastic Galerkin method
Pultarová, Ivana1 
关键词: stochastic Galerkin method;    a posteriori error estimate;    strengthened Cauchy-Bunyakowski-Schwarz constant;    adaptive refinement;   
DOI  :  
学科分类:应用数学
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

We introduce a new tool for obtaining efficient a posteriori estimates of errors of approximate solutions of differential equations the data of which depend linearly on random parameters. The solution method is the stochastic Galerkin method. Polynomial chaos expansion of the solution is considered and the approximation spaces are tensor products of univariate polynomials in random variables and of finite element basis functions. We derive a uniform upper bound to the strengthened Cauchy-Bunyakowski-Schwarz constant for a certain hierarchical decomposition of these spaces. Based on this, an adaptive algorithm is proposed. A simple numerical example illustrates the efficiency of the algorithm. Only the uniform distribution of random variables is considered in this paper, but the results obtained can be modified to any other type of random variables.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902020114093ZK.pdf 294KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:10次