期刊论文详细信息
Confluentes Mathematici
A STRIKING CORRESPONDENCE BETWEEN THE DYNAMICS GENERATED BY THE VECTOR FIELDS AND BY THE SCALAR PARABOLIC EQUATIONS
RAUGEL, GENEVIÈVE1  JOLY, ROMAIN2 
[1] CNRS, Laboratoire de Mathématiques d'Orsay, Orsay Cedex, F-91405, France;Institut Fourier, UMR CNRS 5582, Université de Grenoble, B.P. 74, F-38402 Saint-Martin-d'Hères, France
关键词: Finite- and infinite-dimensional dynamical systems;    vector fields;    scalar parabolic equation;    Kupka–Smale property;    genericity;   
DOI  :  10.1142/S1793744211000369
学科分类:数学(综合)
来源: World Scientific Publishing Co. Pte. Ltd.
PDF
【 摘 要 】

The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations ẏ(t) = g(y(t)) on ℝd and those of the parabolic equations $\dot u = \Delta u + f(x, u, \nabla u)$ on a bounded domain Ω. We give details on the similarities of these dynamics in the cases d = 1, d = 2 and d ≥ 3 and in the corresponding cases Ω = (0, 1), Ω = 𝕋1 and dim(Ω) ≥ 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902019581227ZK.pdf 315KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:9次