PLoS Pathogens | |
Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria | |
Domonbabele F. d. S. Hien1  Thierry Lefevre1  Rakiswende S. Yerbanga1  Jean-Bosco Ouedraogo1  Abdoulaye Diabaté1  Kounbobr R. Dabiré1  Bienvenue K. Yameogo1  Louis-Clément Gouagna2  Anna Cohuet2  Frédéric Simard2  Benjamin Roche3  Rickard Ignell4  Richard J. Hopkins5  Georges A. Ouedraogo6  | |
[1] Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso;MIVEGEC lab (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR Université Montpellier, CNRS 5290, IRD 224, 911 Av. Agropolis, Montpellier, France;UMISCO lab (Unité de Modélisation Mathématique et Informatique des Systèmes Complexes), UMI IRD/UPMC 209, Bondy, France;Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden;University of Greenwich, Natural Resource Institute–Department of Agriculture Health and Environment, Chatham Maritime, Kent, United Kingdom;Université Polytechnique de Bobo Dioulasso, Bobo Dioulasso, Burkina Faso | |
关键词: Mosquitoes; Parasitic diseases; Malarial parasites; Malaria; Sporozoites; Plasmodium; Gametocytes; Fruits; | |
DOI : 10.1371/journal.ppat.1005773 | |
学科分类:生物科学(综合) | |
来源: Public Library of Science | |
【 摘 要 】
The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902019290911ZK.pdf | 1111KB | download |