期刊论文详细信息
PLoS Pathogens
Identification of Two Legionella pneumophila Effectors that Manipulate Host Phospholipids Biosynthesis
David Chetrit1  Marcelo Ehrlich1  Gil Segal2  Ram Viner2 
[1] Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel;Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
关键词: Saccharomyces cerevisiae;    Yeast;    Legionella pneumophila;    Deletion mutagenesis;    Phosphatases;    Host cells;    Phospholipids;    Yeast infections;   
DOI  :  10.1371/journal.ppat.1002988
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

The intracellular pathogen Legionella pneumophila translocates a large number of effector proteins into host cells via the Icm/Dot type-IVB secretion system. Some of these effectors were shown to cause lethal effect on yeast growth. Here we characterized one such effector (LecE) and identified yeast suppressors that reduced its lethal effect. The LecE lethal effect was found to be suppressed by the over expression of the yeast protein Dgk1 a diacylglycerol (DAG) kinase enzyme and by a deletion of the gene encoding for Pah1 a phosphatidic acid (PA) phosphatase that counteracts the activity of Dgk1. Genetic analysis using yeast deletion mutants, strains expressing relevant yeast genes and point mutations constructed in the Dgk1 and Pah1 conserved domains indicated that LecE functions similarly to the Nem1-Spo7 phosphatase complex that activates Pah1 in yeast. In addition, by using relevant yeast genetic backgrounds we examined several L. pneumophila effectors expected to be involved in phospholipids biosynthesis and identified an effector (LpdA) that contains a phospholipase-D (PLD) domain which caused lethal effect only in a dgk1 deletion mutant of yeast. Additionally, LpdA was found to enhance the lethal effect of LecE in yeast cells, a phenomenon which was found to be dependent on its PLD activity. Furthermore, to determine whether LecE and LpdA affect the levels or distribution of DAG and PA in-vivo in mammalian cells, we utilized fluorescent DAG and PA biosensors and validated the notion that LecE and LpdA affect the in-vivo levels and distribution of DAG and PA, respectively. Finally, we examined the intracellular localization of both LecE and LpdA in human macrophages during L. pneumophila infection and found that both effectors are localized to the bacterial phagosome. Our results suggest that L. pneumophila utilize at least two effectors to manipulate important steps in phospholipids biosynthesis.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902019119162ZK.pdf 8101KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:11次