期刊论文详细信息
PLoS Pathogens
Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway
Peter J. M. Rottier1  Donna M. Tscherne2  Adolfo García-Sastre2  Cornelis A. M. de Haan3  Marleen J. Wienholts4  Florine Scholte4  Viviana Cobos-Jiménez4  Erik de Vries4 
[1] Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, United States of America;Department of Microbiology, Mount Sinai School of Medicine, New York, United States of America;Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, United States of America;Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
关键词: Influenza A virus;    HeLa cells;    Luciferase;    Small interfering RNAs;    Actins;    Tyrosine kinases;    Wireless sensor networks;    Endocytosis;   
DOI  :  10.1371/journal.ppat.1001329
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

Influenza A virus (IAV) enters host cells upon binding of its hemagglutinin glycoprotein to sialylated host cell receptors. Whereas dynamin-dependent, clathrin-mediated endocytosis (CME) is generally considered as the IAV infection pathway, some observations suggest the occurrence of an as yet uncharacterized alternative entry route. By manipulating entry parameters we established experimental conditions that allow the separate analysis of dynamin-dependent and -independent entry of IAV. Whereas entry of IAV in phosphate-buffered saline could be completely inhibited by dynasore, a specific inhibitor of dynamin, a dynasore-insensitive entry pathway became functional in the presence of fetal calf serum. This finding was confirmed with the use of small interfering RNAs targeting dynamin-2. In the presence of serum, both IAV entry pathways were operational. Under these conditions entry could be fully blocked by combined treatment with dynasore and the amiloride derivative EIPA, the hallmark inhibitor of macropinocytosis, whereas either drug alone had no effect. The sensitivity of the dynamin-independent entry pathway to inhibitors or dominant-negative mutants affecting actomyosin dynamics as well as to a number of specific inhibitors of growth factor receptor tyrosine kinases and downstream effectors thereof all point to the involvement of macropinocytosis in IAV entry. Consistently, IAV particles and soluble FITC-dextran were shown to co-localize in cells in the same vesicles. Thus, in addition to the classical dynamin-dependent, clathrin-mediated endocytosis pathway, IAV enters host cells by a dynamin-independent route that has all the characteristics of macropinocytosis.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902019050762ZK.pdf 6294KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:18次