期刊论文详细信息
| Journal of inequalities and applications | |
| Riemann-Liouville fractional Hermite-Hadamard inequalities. Part II: for twice differentiable geometric-arithmetically s -convex functions | |
| YuMei Liao1  | |
| 关键词: fractional Hermite-Hadamard inequalities; Riemann-Liouville fractional integrals; geometric-arithmetically s-convex functions; | |
| DOI : 10.1186/1029-242X-2013-517 | |
| 学科分类:数学(综合) | |
| 来源: SpringerOpen | |
PDF
|
|
【 摘 要 】
Motivated by the definition of geometric-arithmetically s-convex functions in (Shuang et al. in Analysis 33:197-208, 2013) and second-order fractional integral identities in (Zhang and Wang in J. Inequal. Appl. 2013:220, 2013; Wang et al. in Appl. Anal. 2012, doi:10.1080/00036811.2012.727986), we establish some interesting Riemann-Liouville fractional Hermite-Hadamard inequalities for twice differentiable geometric-arithmetically s-convex functions via beta function and incomplete beta function. MSC:26A33, 26A51, 26D15.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201902018970337ZK.pdf | 311KB |
PDF