Journal of inequalities and applications | |
The i th p -affine surface area | |
Tongyi Ma1  | |
关键词: convex bodies; ith p-affine surface area; ith p-affine area ratio; Blaschke-Santaló inequality; Brunn-Minkowski-Firey theory; 52A30; 52A40; | |
DOI : 10.1186/s13660-015-0703-7 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
About two decades ago Lutwak introduced the concept of p-affine surface area. More recently, the results of Lutwak have been generalized by Ma to the entire class of so-called ith p-affine surface areas. In this paper, we further research this new notion and give its integral representation. Affine isoperimetric and Blaschke-Santaló inequalities, which generalize the inequalities obtained by Lutwak, are established. Furthermore, we prove the ith p-affine area ratio of convex body K for the ith p-affine surface area, which does not exceed the generalized Santaló product of convex body K.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902018803426ZK.pdf | 1582KB | download |