期刊论文详细信息
Confluentes Mathematici | |
MAXIMAL INEQUALITY FOR HIGH-DIMENSIONAL CUBES | |
AUBRUN, GUILLAUME1  | |
[1] Université de Lyon, CNRS, Institut Camille Jordan, France | |
关键词: Maximal inequality; high-dimensional cubes; Brownian bridge; | |
DOI : 10.1142/S1793744209000067 | |
学科分类:数学(综合) | |
来源: World Scientific Publishing Co. Pte. Ltd. | |
【 摘 要 】
We present lower estimates for the best constant appearing in the weak (1, 1) maximal inequality in the space (Rn, ‖ · ‖∞). We show that this constant grows to infinity faster than (log n)1-o(1) when n tends to infinity. To this end, we follow and simplify the approach used by J. M. Aldaz. The new part of the argument relies on Donsker's theorem identifying the Brownian bridge as the limit object describing the statistical distribution of the coordinates of a point randomly chosen in the unit cube [0, 1]n (n large).
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902016371950ZK.pdf | 185KB | download |