期刊论文详细信息
Journal of inequalities and applications
Non-hermitian extensions of Heisenberg type and Schrödinger type uncertainty relations
Kenjiro Yanagi1 
关键词: trace inequality;    metric adjusted skew information;    non-hermitian observable;    15A45;    47A63;    94A17;   
DOI  :  10.1186/s13660-015-0895-x
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In quantum mechanics it is well known that the Heisenberg-Schrödinger uncertainty relations hold for two non-commutative observables and density operator. Recently Dou and Du (J. Math. Phys. 54:103508, 2013; Int. J. Theor. Phys. 53:952-958, 2014) obtained several uncertainty relations for two non-commutative non-hermitian observables and density operators. In this paper, we show that their results can be given as corollaries of our non-hermitian extensions of Heisenberg type or Schrödinger type uncertainty relations for the generalized metric adjusted skew information or generalized metric adjusted correlation measures which were obtained in Furuichi and Yanagi (J. Math. Anal. Appl. 388:1147-1156, 2012).

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902015843554ZK.pdf 1533KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:9次