期刊论文详细信息
PLoS Pathogens
Discordant Evolution of the Adjacent Antiretroviral Genes TRIM22 and TRIM5 in Mammals
Sara L Sawyer1  Michael Emerman1  Harmit S Malik2 
[1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America;Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
关键词: Mammalian genomics;    Evolutionary genetics;    Primates;    Protein domains;    Dogs;    Viral evolution;    Genome evolution;    Phylogenetic analysis;   
DOI  :  10.1371/journal.ppat.0030197
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

TRIM5α provides a cytoplasmic block to retroviral infection, and orthologs encoded by some primates are active against HIV. Here, we present an evolutionary comparison of the TRIM5 gene to its closest human paralogs: TRIM22, TRIM34, and TRIM6. We show that TRIM5 and TRIM22 have a dynamic history of gene expansion and loss during the evolution of mammals. The cow genome contains an expanded cluster of TRIM5 genes and no TRIM22 gene, while the dog genome encodes TRIM22 but has lost TRIM5. In contrast, TRIM6 and TRIM34 have been strictly preserved as single gene orthologs in human, dog, and cow. A more focused analysis of primates reveals that, while TRIM6 and TRIM34 have evolved under purifying selection, TRIM22 has evolved under positive selection as was previously observed for TRIM5. Based on TRIM22 sequences obtained from 27 primate genomes, we find that the positive selection of TRIM22 has occurred episodically for approximately 23 million years, perhaps reflecting the changing pathogenic landscape. However, we find that the evolutionary episodes of positive selection that have acted on TRIM5 and TRIM22 are mutually exclusive, with generally only one of these genes being positively selected in any given primate lineage. We interpret this to mean that the positive selection of one gene has constrained the adaptive flexibility of its neighbor, probably due to genetic linkage. Finally, we find a striking congruence in the positions of amino acid residues found to be under positive selection in both TRIM5α and TRIM22, which in both proteins fall predominantly in the β2-β3 surface loop of the B30.2 domain. Astonishingly, this same loop is under positive selection in the multiple cow TRIM5 genes as well, indicating that this small structural loop may be a viral recognition motif spanning a hundred million years of mammalian evolution.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902015004699ZK.pdf 1136KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:10次