期刊论文详细信息
PLoS Pathogens
Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1
Damien R. Drew1  James G. Beeson1  Michael Foley2  Xiopeng Ge2  Robin F. Anders2  Kazutoyo Miura3  Carole A. Long3  Diouf Ababacar3  Adrian H. Batchelor4  Meng Shi4  Sheetij Dutta4  J. David Haynes4  Yazmin I. Rovira4  Lisa S. Dlugosz4  J. Kathleen Moch4 
[1] Burnet Institute, Melbourne, Victoria, Australia;Department of Biochemistry, La Trobe University, Victoria, Australia;Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, Maryland, United States of America;Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
关键词: Vaccines;    Antibodies;    Enzyme-linked immunoassays;    Plasmodium;    Malaria;    Malarial parasites;    Antigens;    Monoclonal antibodies;   
DOI  :  10.1371/journal.ppat.1003840
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902014128982ZK.pdf 3897KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:10次