期刊论文详细信息
Confluentes Mathematici
POSITIVE LIOUVILLE THEOREMS AND ASYMPTOTIC BEHAVIOR FOR p-LAPLACIAN TYPE ELLIPTIC EQUATIONS WITH A FUCHSIAN POTENTIAL
PINCHOVER, YEHUDA1  FRAAS, MARTIN2 
[1] Department of Mathematics, Technion — Israel Institute of Technology, Haifa, 32000, Israel;Department of Physics, Technion — Israel Institute of Technology, Haifa, 32000, Israel
关键词: Fuchsian operator;    isolated singularity;    Liouville theorem;    p-Laplacian;    positive solutions;    quasilinear elliptic operator;    removable singularity;   
DOI  :  10.1142/S1793744211000321
学科分类:数学(综合)
来源: World Scientific Publishing Co. Pte. Ltd.
PDF
【 摘 要 】

We study positive Liouville theorems and the asymptotic behavior of positive solutions of p-Laplacian type elliptic equations of the form -Δp(u) + V|u|p-2 u = 0 in X, where X is a domain in ℝd, d ≥ 2 and 1 < p < ∞. We assume that the potential V has a Fuchsian type singularity at a point ζ, where either ζ = ∞ and X is a truncated C2-cone, or ζ = 0 and ζ is either an isolated point of ∂X or belongs to a C2-portion of ∂X.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902013915248ZK.pdf 362KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:5次