期刊论文详细信息
PLoS Pathogens
Unique Evolution of the UPR Pathway with a Novel bZIP Transcription Factor, Hxl1, for Controlling Pathogenicity of Cryptococcus neoformans
Kwang-Woo Jung1  Ying-Lien Chen2  Hyun Ah Kang2  Seon Ah Cheon3  Joseph Heitman4  Yong-Sun Bahn4 
[1] Center for Fungal Pathogenesis, Seoul National University, Seoul, Korea;Department of Biotechnology, Center for Fungal Pathogenesis, Yonsei University, Seoul, Korea;Department of Life Science, Research Center for Biomolecules and Biosystems, College of Natural Science, Chung-Ang University, Seoul, Korea;Department of Molecular Genetics and Microbiology, Medicine, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
关键词: Cryptococcus neoformans;    Transcription factors;    Saccharomyces cerevisiae;    Introns;    Messenger RNA;    Cell walls;    Endoplasmic reticulum;    Stress signaling cascade;   
DOI  :  10.1371/journal.ppat.1002177
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

In eukaryotic cells, the unfolded protein response (UPR) pathway plays a crucial role in cellular homeostasis of the endoplasmic reticulum (ER) during exposure to diverse environmental conditions that cause ER stress. Here we report that the human fungal pathogen Cryptococcus neoformans has evolved a unique UPR pathway composed of an evolutionarily conserved Ire1 protein kinase and a novel bZIP transcription factor encoded by HXL1 (HAC1 and XBP1-Like gene 1). C. neoformans HXL1 encodes a protein lacking sequence homology to any known fungal or mammalian Hac1/Xbp1 protein yet undergoes the UPR-induced unconventional splicing in an Ire1-dependent manner upon exposure to various stresses. The structural organization of HXL1 and its unconventional splicing is widely conserved in C. neoformans strains of divergent serotypes. Notably, both C. neoformans ire1 and hxl1 mutants exhibited extreme growth defects at 37°C and hypersensitivity to ER stress and cell wall destabilization. All of the growth defects of the ire1 mutant were suppressed by the spliced active form of Hxl1, supporting that HXL1 mRNA is a downstream target of Ire1. Interestingly, however, the ire1 and hxl1 mutants showed differences in thermosensitivity, expression patterns for a subset of genes, and capsule synthesis, indicating that Ire1 has both Hxl1-dependent and -independent functions in C. neoformans. Finally, Ire1 and Hxl1 were shown to be critical for virulence of C. neoformans, suggesting UPR signaling as a novel antifungal therapeutic target.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902013399014ZK.pdf 4352KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:27次