期刊论文详细信息
PLoS Pathogens
Identification of Proteins Targeted by the Thioredoxin Superfamily in Plasmodium falciparum
Stefan Rahlfs1  Katja Becker2  Esther Jortzik3  Karl Forchhammer3  Nicole Sturm3  Sasa Koncarevic3  Boniface M. Mailu3  Marcel Deponte4 
[1] Institute for Physiological Chemistry, Ludwig Maximilians University, Munich, Germany;Institute of Microbiology and Molecular Biology, Justus Liebig University, Giessen, Germany;Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany;Proteome Sciences R&D GmbH & Co. KG, Frankfurt am Main, Germany
关键词: Plasmodium;    Oxidation-reduction reactions;    Cysteine;    Malarial parasites;    Protein interactions;    Plasmodium falciparum;    Heat shock response;    Protein metabolism;   
DOI  :  10.1371/journal.ppat.1000383
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

The malarial parasite Plasmodium falciparum possesses a functional thioredoxin and glutathione system comprising the dithiol-containing redox proteins thioredoxin (Trx) and glutaredoxin (Grx), as well as plasmoredoxin (Plrx), which is exclusively found in Plasmodium species. All three proteins belong to the thioredoxin superfamily and share a conserved Cys-X-X-Cys motif at the active site. Only a few of their target proteins, which are likely to be involved in redox reactions, are currently known. The aim of the present study was to extend our knowledge of the Trx-, Grx-, and Plrx-interactome in Plasmodium. Based on the reaction mechanism, we generated active site mutants of Trx and Grx lacking the resolving cysteine residue. These mutants were bound to affinity columns to trap target proteins from P. falciparum cell extracts after formation of intermolecular disulfide bonds. Covalently linked proteins were eluted with dithiothreitol and analyzed by mass spectrometry. For Trx and Grx, we were able to isolate 17 putatively redox-regulated proteins each. Furthermore, the approach was successfully established for Plrx, leading to the identification of 21 potential target proteins. In addition to confirming known interaction partners, we captured potential target proteins involved in various processes including protein biosynthesis, energy metabolism, and signal transduction. The identification of three enzymes involved in S-adenosylmethionine (SAM) metabolism furthermore suggests that redox control is required to balance the metabolic fluxes of SAM between methyl-group transfer reactions and polyamine synthesis. To substantiate our data, the binding of the redoxins to S-adenosyl-L-homocysteine hydrolase and ornithine aminotransferase (OAT) were verified using BIAcore surface plasmon resonance. In enzymatic assays, Trx was furthermore shown to enhance the activity of OAT. Our approach led to the discovery of several putatively redox-regulated proteins, thereby contributing to our understanding of the redox interactome in malarial parasites.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902013220482ZK.pdf 457KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:5次