期刊论文详细信息
The Journal of Nonlinear Sciences and its Applications | |
Uniform convexity in \(\ell_{p(\cdot)}\) | |
Mohamed A.Khamsi1  MostafaBachar2  MessaoudBounkhel2  | |
[1] Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia | |
关键词: Fixed point; modular vector spaces; nonexpansive mapping; uniformly convex; variable exponent spaces; | |
DOI : 10.22436/jnsa.010.10.15 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Shomal University | |
【 摘 要 】
In this work, we investigate the variable exponent sequence space \(\ell_{p(\cdot)}\).In particular, we prove a geometric property similar to uniform convexity without the assumption \(\limsup_{n \to \infty} p(n) < \infty\).This property allows us to prove the analogue to Kirk's fixed point theorem in the modular vector space \(\ell_{p(\cdot)}\) under Nakano's formulation.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902012602701ZK.pdf | 682KB | download |