期刊论文详细信息
The Journal of Nonlinear Sciences and its Applications
Uniform convexity in \(\ell_{p(\cdot)}\)
Mohamed A.Khamsi1  MostafaBachar2  MessaoudBounkhel2 
[1] Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;Department of Mathematics, College of Sciences, King Saud University, Riyadh, Saudi Arabia
关键词: Fixed point;    modular vector spaces;    nonexpansive mapping;    uniformly convex;    variable exponent spaces;   
DOI  :  10.22436/jnsa.010.10.15
学科分类:社会科学、人文和艺术(综合)
来源: Shomal University
PDF
【 摘 要 】

In this work, we investigate the variable exponent sequence space \(\ell_{p(\cdot)}\).In particular, we prove a geometric property similar to uniform convexity without the assumption \(\limsup_{n \to \infty} p(n) < \infty\).This property allows us to prove the analogue to Kirk's fixed point theorem in the modular vector space \(\ell_{p(\cdot)}\) under Nakano's formulation.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201902012602701ZK.pdf 682KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:15次