期刊论文详细信息
PLoS Pathogens
Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei
Keni Vidilaseris1  Johannes Lesigang1  Célia Florimond1  Mélanie Bonhivers1  Gang Dong2  Marie Eggenspieler3  Nicolas Landrein3  Derrick Roy Robinson3  Anna Albisetti3 
[1] CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France;Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria;University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
关键词: Flagella;    Trypanosoma;    Cytoskeleton;    Microtubules;    Trypanosoma brucei gambiense;    RNA interference;    Kinetoplasts;    Immunofluorescence;   
DOI  :  10.1371/journal.ppat.1006710
学科分类:生物科学(综合)
来源: Public Library of Science
PDF
【 摘 要 】

Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP) but remains attached to the cell body via the flagellum attachment zone (FAZ). The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ) that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC) circumvents the flagellum. Overlapping the FPC is the hook complex (HC) (a sub-structure of the previously named bilobe) that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein—FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201902012545091ZK.pdf 15004KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:16次