Journal of inequalities and applications | |
Dunkl generalization of q -Szász-Mirakjan Kantorovich operators which preserve some test functions | |
Mohammad Mursaleen1  | |
关键词: q-integers; Dunkl analog; Szász operators; Szász-Mirakjan-Kantorovich operators; modulus of continuity; Korovkin’s type approximation theorem; Voronovskaja-type theorem; 41A25; 41A36; 33C45; | |
DOI : 10.1186/s13660-016-1257-z | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
In this paper we introduce q-Szász-Mirakjan-Kantorovich operators generated by a Dunkl generalization of the exponential function and we propose two different modifications of the q-Szász-Mirakjan-Kantorovich operators which preserve some test functions. We obtain some approximation results with the help of the well-known Korovkin theorem and the weighted Korovkin theorem for these operators. Furthermore, we study convergence properties in terms of the modulus of continuity and the class of Lipschitz functions. This type of operator modification enables better error estimation than the classical ones. We also obtain a Voronovskaja-type theorem for these operators.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201902010151393ZK.pdf | 1501KB | download |