Frontiers in Psychology | |
Dynamical systems analysis applied to working memory data | |
Fidan Gasimova1  | |
关键词: dynamical systems analysis; intensive longitudinal data; intraindividual variability; B-spline imputation; simulation study; | |
DOI : 10.3389/fpsyg.2014.00687 | |
学科分类:心理学(综合) | |
来源: Frontiers | |
【 摘 要 】
In the present paper we investigate weekly fluctuations in the working memory capacity (WMC) assessed over a period of 2 years. We use dynamical system analysis, specifically a second order linear differential equation, to model weekly variability in WMC in a sample of 112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with missing data. The results show a significant negative frequency parameter in the data, indicating a cyclical pattern in weekly memory updating performance across time. We use a multilevel modeling approach to capture individual differences in model parameters and find that a higher initial performance level and a slower improvement at the MU task is associated with a slower frequency of oscillation. Additionally, we conduct a simulation study examining the analysis procedure's performance using different numbers of B-spline knots and values of time delay embedding dimensions. Results show that the number of knots in the B-spline imputation influence accuracy more than the number of embedding dimensions.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201901228777123ZK.pdf | 1523KB | download |