期刊论文详细信息
Frontiers in Psychology
Does Cognition Have a Role in Plasticity of “Innate Behavior”? A Perspective From Drosophila
E. Axel Gorostiza1 
关键词: innate behavior;    insects;    behavioral flexibility;    Drosophila;    stimulus-response;    behavioral plasticity;   
DOI  :  10.3389/fpsyg.2018.01502
学科分类:心理学(综合)
来源: Frontiers
PDF
【 摘 要 】

The term innate is commonly used to refer to behaviors inherited and not learned or derived from experience. This definition denies or ignores the inborn components of learning. An animal can only learn if it already has the components required for learning, e.g., the molecular and neuronal substrates. Moreover, all behaviors are, to some extent, susceptible to modification by experience. Hence, no behavior can be strictly learned or innate (Shettleworth, 2010), making this distinction and the terms scientifically inappropriate to some extent (Mameli and Bateson, 2006; Bateson and Mameli, 2007). However, given the absence of a better term, it is still possible to find some behaviors classified as innate behaviors in literature, and defined as “stereotypic patterns of movement inherited from birth that require no prior experience for proper execution” (Kim et al., 2015). Noticeably, the concept of stereotypy was arbitrarily included into the definition of innate behavior. This group includes behaviors as different as escape responses (movements performed by an animal to avoid a possible predator; Card, 2012), taxes (orienting movement of an organism directed in relation to a stimulus; Zupanc, 2010), and courtship. What these behaviors have in common is that they are dominated by innate components and preferences and seem to be stereotypic and automatic responses elicited by a defined stimulus (i.e., reflexes, senso Purves et al., 2004). They are considered sensory-motor routines driven by inborn responses to biologically relevant sensory cues. This is the base of the sensory-response model, wherein the brain only reacts to external stimuli and the behaviors are the responses (Dickinson, 1985). Although there is increasing evidence of an active role of the brain with the external stimuli exerting only a modulatory effect in humans (Raichle, 2010) and invertebrates (Gaudry and Kristan, 2009; Gordus et al., 2015), many innate behaviors in insects are still described using the sensory-response model. This interpretation led to some important aspects of innate behaviors being neglected or misinterpreted. Any behavioral researcher has experienced that these behavioral responses are far from constant among groups or single individuals from the same species, or even the same retested individual (Kain et al., 2012; Buchanan et al., 2015). Researchers work hard to control this behavioral variability by modifying their experiments. Some of these manipulations include only using animals in a certain internal or motivational state. For example, in olfactory appetitive learning in Drosophila, only starved animals are used and the length of the starvation period influences the results (Colomb et al., 2009). Similarly, when using the proboscis extension reflex assay, animals that did not respond to sucrose in a pretraining session or naïve animals that displayed spontaneous proboscis extension to water are discarded (Shiraiwa and Carlson, 2007). However, in our efforts to control the response of animals, we are probably curtailing the repertoire of actions we can observe, thus imposing the response we want to study onto our results. This increases the probability of that specific actions occurring and, importantly, lead us to forget the importance of variability for survival. An automatic and rigid response could soon be disadvantageous. What is an appropriate response to a given stimulus when the animal is hungry may be maladaptive when the animal is seeking a mating partner or escaping from a predator, and vice versa. The animal must evaluate its internal state and the external conditions before the most adaptive action is selected. The expected outcome is the driving force that shapes the final action (Heisenberg, 2014, 2015).

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901228576553ZK.pdf 309KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:18次