期刊论文详细信息
Frontiers in Psychology
Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions
Nancy Raitano Lee1 
关键词: executive function;    anatomical covariance;    cortical thickness;    magnetic resonance imaging;    Trail Making Test;    brain;    child;    adolescent;   
DOI  :  10.3389/fpsyg.2014.00496
学科分类:心理学(综合)
来源: Frontiers
PDF
【 摘 要 】

While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT), relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females), ages 9–14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form). TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing) and the difference in time between Trails B and A (number sequencing only). Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT) across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal, and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in childhood.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901228382374ZK.pdf 2227KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:12次