期刊论文详细信息
Boundary value problems
Computing eigenvalues and Hermite interpolation for Dirac systems with eigenparameter in boundary conditions
Mohammed M Tharwat1 
[1] Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
关键词: Dirac systems;    eigenvalue problems with eigenparameter in the boundary conditions;    Hermite interpolations;    truncation error;    amplitude error;    sinc methods;   
DOI  :  10.1186/1687-2770-2013-36
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic determinant where zeros cannot be explicitly computed. In this paper we use the derivative sampling theorem ‘Hermite interpolations’ to compute approximate values of the eigenvalues of Dirac systems with eigenvalue parameter in one or two boundary conditions. We use recently derived estimates for the truncation and amplitude errors to compute error bounds. Using computable error bounds, we obtain eigenvalue enclosures. Examples with tables and illustrative figures are given. Also numerical examples, which are given at the end of the paper, give comparisons with the classical sinc-method in Annaby and Tharwat (BIT Numer. Math. 47:699-713, 2007) and explain that the Hermite interpolations method gives remarkably better results. MSC:34L16, 94A20, 65L15.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901225027037ZK.pdf 468KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:15次