期刊论文详细信息
Fixexd point theory and applications
New complexity analysis for primal-dual interior-point methods for self-scaled optimization problems
Gue Myung Lee1  Bo Kyung Choi1 
[1] Department of Applied Mathematics, Pukyong National University, Busan, Korea
关键词: Euclidean Jordan algebra;    self-scaled optimization problem;    primal-dual interior-point methods;    kernel function;    proximity function;    complexity analysis;    worst-case iteration bound;   
DOI  :  10.1186/1687-1812-2012-213
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

A linear optimization problem over a symmetric cone, defined in a Euclidean Jordan algebra and called a self-scaled optimization problem (SOP), is considered. We formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SOP by using a proximity function defined by a new kernel function, and we obtain the best known complexity results of the large-update IPM for the SOP by using the Euclidean Jordan algebra techniques. MSC:90C51, 90C25, 65K05.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901224982910ZK.pdf 433KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:21次