Boundary value problems | |
Global large-data generalized solutions in a two-dimensional chemotaxis-Stokes system with singular sensitivity | |
Yilong Wang1  | |
[1] School of Sciences, Southwest Petroleum University, Chengdu, China | |
关键词: chemotaxis; Stokes; global existence; generalized solutions; 35Q30; 35Q35; 35K55; 35Q92; 92C17; | |
DOI : 10.1186/s13661-016-0687-3 | |
学科分类:数学(综合) | |
来源: SpringerOpen | |
【 摘 要 】
This paper considers the following chemotaxis-Stokes system:{nt+u⋅∇n=Δn−∇⋅(nc∇c),ct+u⋅∇c=Δc−nc,ut=Δu+∇P+n∇ϕ,∇⋅u=0,$$ \left \{ \textstyle\begin{array}{l} n_{t}+u\cdot\nabla n=\Delta n-\nabla\cdot(\frac{n}{c}\nabla c), \\ c_{t}+u\cdot\nabla c=\Delta c-nc, \\ u_{t}=\Delta u+\nabla P+n\nabla\phi, \\ \nabla\cdot u=0, \end{array}\displaystyle \right . $$in two-dimensional smoothly bounded domains, which can be seen as a model to describe the migration of aerobic bacteria swimming in an incompressible fluid. It is proved that the corresponding initial-boundary value problem possesses a global generalized solution for any sufficiently regular initial data(n0,c0,u0)$(n_{0}, c_{0}, u_{0})$satisfyingn0≥0$n_{0}\geq0$andc0>0$c_{0}>0$. Moreover, the solution component c satisfiesc(⋅,t)⇀⋆0$c(\cdot,t)\overset{\star}{\rightharpoonup}0$inL∞(Ω)$L^{\infty}(\Omega )$ast→∞$t\rightarrow\infty$andc(⋅,t)→0$c(\cdot,t)\rightarrow0$inLp(Ω)$L^{p}(\Omega)$ast→∞$t\rightarrow\infty$for anyp∈[1,∞)$p\in[1,\infty)$. To the best of our knowledge, this is the first result on global solvability in a chemotaxis-Stokes system with singular sensitivity and signal absorption.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201901224291290ZK.pdf | 1895KB | download |