| Cryptography | |
| An Attack Bound for Small Multiplicative Inverse of φ(N) mod e with a Composed Prime Sum p + q Using Sublattice Based Techniques | |
| Kameswari, PrathaAnuradha1  | |
| 关键词: RSA; Cryptanalysis; lattices; LLL (Lenstra–Lenstra–Lovász) algorithm; Coppersmith’s method; | |
| DOI : 10.3390/cryptography2040036 | |
| 学科分类:工程和技术(综合) | |
| 来源: mdpi | |
PDF
|
|
【 摘 要 】
In this paper, we gave an attack on RSA (Rivest–Shamir–Adleman) Cryptosystem when φ ( N ) has small multiplicative inverse modulo e and the prime sum p + q is of the form p + q =2 n k 0+k 1 , where n is a given positive integer and k 0 and k 1 are two suitably small unknown integers using sublattice reduction techniques and Coppersmith’s methods for finding small roots of modular polynomial equations. When we compare this method with an approach using lattice based techniques, this procedure slightly improves the bound and reduces the lattice dimension. Employing the previous tools, we provide a new attack bound for the deciphering exponent when the prime sum p + q =2 n k 0+k 1and performed an analysis with Boneh and Durfee’s deciphering exponent bound for appropriately small k 0 and k 1.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201901223838201ZK.pdf | 388KB |
PDF