期刊论文详细信息
Boundary value problems
The existence of a ground state solution for a class of fractional differential equation with p -Laplacian operator
Zhigang Hu1  Wenbin Liu1  Taiyong Chen1 
[1] Department of Mathematics, China University of Mining and Technology, Xuzhou, P.R. China
关键词: fractional differential equations;    boundary value problem;    Nehari manifold;    ground state solution;    34A08;    35A15;   
DOI  :  10.1186/s13661-016-0557-z
学科分类:数学(综合)
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we apply the Nehari manifold method to study the fractional p-Laplacian differential equation{DTαtϕp(0Dtαu(t))=f(t,u(t)),t∈[0,T],u(0)=u(T)=0,$$ \left \{ \textstyle\begin{array}{ll} {}_{t}D_{T}^{\alpha}\phi_{p}({}_{0}D_{t}^{\alpha}u(t))=f(t,u(t)), \quad t\in[0,T], \\ u(0)=u(T)=0, \end{array}\displaystyle \right . $$whereDtα0${}_{0}D_{t}^{\alpha}$,DTαt${}_{t}D_{T}^{\alpha}$are the left and right Riemann-Liouville fractional derivatives of order0≤α<1$0\leq\alpha<1$, respectively. We prove the existence of a ground state solution for the boundary value problem.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901222450681ZK.pdf 1461KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:7次