期刊论文详细信息
Frontiers in Psychology
Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab
Sebastian Wallot1 
关键词: average mutual information;    false-nearest neighbors;    time-delayed embedding;    Multidimensional Time series;    Multidimensional Recurrence Quantification Analysis;    code:Matlab;   
DOI  :  10.3389/fpsyg.2018.01679
学科分类:心理学(综合)
来源: Frontiers
PDF
【 摘 要 】

Using the method or time-delayed embedding, a signal can be embedded into higher-dimensional space in order to study its dynamics. This requires knowledge of two parameters: The delay parameter τ, and the embedding dimension parameter D. Two standard methods to estimate these parameters in one-dimensional time series involve the inspection of the Average Mutual Information (AMI) function and the False Nearest Neighbor (FNN) function. In some contexts, however, such as phase-space reconstruction for Multidimensional Recurrence Quantification Analysis (MdRQA), the empirical time series that need to be embedded already possess a dimensionality higher than one. In the current article, we present extensions of the AMI and FNN functions for higher dimensional time series and their application to data from the Lorenz system coded in Matlab.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901220703459ZK.pdf 654KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:23次