期刊论文详细信息
AIMS Mathematics
Existence of a solution to a semilinear elliptic equation
Diane Denny1 
关键词: ;    elliptic;    existence;    uniqueness;    semilinear;    bifurcation;   
DOI  :  10.3934/Math.2016.3.208
学科分类:数学(综合)
来源: AIMS Press
PDF
【 摘 要 】

We consider the equation $-\Delta u =f(u)-\frac{1}{|\Omega|}\int_{\Omega} f(u)d\mathbf{x}$, where the domain $\Omega= \mathbb{T}^N$, the $N$-dimensional torus, with $N=2$ or $N=3$. And $f$ is a given smooth function of $u$ for$u(\mathbf{x}) \in G \subset \mathbb{R}$. We prove that there exists a solution $u$ to this equation which is unique if $|\frac{df}{du}(u_0)|$ is sufficiently small, where $u_0 \in G$ is a given constant. And we prove that the solution $u$ is not unique if $\frac{df}{du}(u_0) $ is a simple eigenvalue of $-\Delta$.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201901219463413ZK.pdf 265KB PDF download
  文献评价指标  
  下载次数:21次 浏览次数:12次