期刊论文详细信息
| AIMS Mathematics | |
| Existence of a solution to a semilinear elliptic equation | |
| Diane Denny1  | |
| 关键词: : elliptic; existence; uniqueness; semilinear; bifurcation; | |
| DOI : 10.3934/Math.2016.3.208 | |
| 学科分类:数学(综合) | |
| 来源: AIMS Press | |
PDF
|
|
【 摘 要 】
We consider the equation $-\Delta u =f(u)-\frac{1}{|\Omega|}\int_{\Omega} f(u)d\mathbf{x}$, where the domain $\Omega= \mathbb{T}^N$, the $N$-dimensional torus, with $N=2$ or $N=3$. And $f$ is a given smooth function of $u$ for$u(\mathbf{x}) \in G \subset \mathbb{R}$. We prove that there exists a solution $u$ to this equation which is unique if $|\frac{df}{du}(u_0)|$ is sufficiently small, where $u_0 \in G$ is a given constant. And we prove that the solution $u$ is not unique if $\frac{df}{du}(u_0) $ is a simple eigenvalue of $-\Delta$.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201901219463413ZK.pdf | 265KB |
PDF