Turkish Journal of Biology | |
Apoplastic and symplastic solute concentrations contribute to osmotic adjustment in bean genotypes during drought stress | |
NESLİHAN SARUHAN GÜLER1  | |
关键词: Apoplast; symplast; drought stress; tolerance; inorganic ions; abscisic acid; | |
学科分类:生物科学(综合) | |
来源: Scientific and Technical Research Council of Turkey - TUBITAK | |
【 摘 要 】
The present study investigates changes in the inorganic ions, proline, and endogenous abscisic acid (ABA) contents of the apoplastic and symplastic compartments of leaves from drought-tolerant (Yakutiye) and drought-sensitive (Zulbiye) cultivars of the common bean (Phaseolus vulgaris L.). Drought stress caused a decrease in leaf water potential and stomatal conductance in both cultivars. Concentrations of proline in the drought-tolerant and drought-sensitive cultivars increased in response to drought stress in both compartments. The symplastic K^+ concentration decreased in both cultivars. However, the opposite trend was observed concerning K^+ concentrations in the apoplastic areas. While the symplastic Na^+ concentrations significantly decreased in the drought-tolerant cultivar, the apoplastic Na^+ concentrations increased during drought stress. However, Na^+ concentrations did not significantly change in either of the compartments in the drought-sensitive cultivar. The Ca^2^+ concentrations in the sensitive cultivar significantly decreased in both compartments during drought stress. In the tolerant cultivar, the Ca^2^+ concentration significantly increased in the symplast but decreased in the apoplast. Cl^- concentrations in the tolerant cultivar did not significantly change in either compartment. In the sensitive cultivar, the Cl^- concentration increased in the apoplastic area but decreased in the symplastic area. In addition, while the symplastic sap of the leaves exhibited a constant pH value, it diminished in the apoplast during drought stress. Symplastic and apoplastic ABA concentrations significantly increased in both cultivars. It might be said that inorganic ions (especially Na^+, K^+, and Ca^2^+) and ABA concentrations changed between the apoplastic and symplastic spaces to contribute to osmotic adjustment under drought stress. In addition, the drought-tolerant cultivar showed a much higher capacity to maintain osmotic adjustment between the symplast and the apoplast.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201901210830663ZK.pdf | 216KB | download |