期刊论文详细信息
Abstract and Applied Analysis
Variational Approaches to Characterize Weak Solutions for Some Problems of Mathematical Physics Equations
Research Article
Irina Meghea1 
[1] Department of Mathematical Methods and Models, Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania, upb.ro
Others  :  1253627
DOI  :  10.1155/2016/2071926
 received in 2015-11-10, accepted in 2016-01-03,  发布年份 2016
PDF
【 授权许可】

CC BY   
Copyright © 2016 Irina Meghea. 2016

【 预 览 】
附件列表
Files Size Format View
2071926.pdf 604KB PDF download
【 参考文献 】
  • [1]I. Meghea. (2009). Ekeland Variational Principle with Generalizations and Variants. DOI: 10.11650/tjm.19.2015.3873.
  • [2]I. Meghea. Surjectivité et théorèmes type alternative de Fredholm pour les opérateurs de la forme et quelques Dirichlet problemes. . DOI: 10.11650/tjm.19.2015.3873.
  • [3]I. Meghea. (2010). Two solutions for a problem of partial differential equations. UPB Scientific Bulletin, Series A.72(3):41-58. DOI: 10.11650/tjm.19.2015.3873.
  • [4]I. Meghea. (2010). Some results of Fredholm alternative type for operators of form with applications. U.P.B. Scientific Bulletin, Series A.72(4):21-32. DOI: 10.11650/tjm.19.2015.3873.
  • [5]I. Meghea. (2010). Weak solutions for the pseudo-Laplacianusing a perturbed variational principle and via surjectivity results. BSG Proceedings.17:140-150. DOI: 10.11650/tjm.19.2015.3873.
  • [6]I. Meghea. (2011). Weak solutions for -Laplacian and for pseudo-Laplacian using surjectivity theorems. BSG Proceedings.18:67-76. DOI: 10.11650/tjm.19.2015.3873.
  • [7]N. Amiri, M. Zivari-Rezapour. (2015). Maximization and minimization problems related to -Laplacian equation on a multiply connected domain. Taiwanese Journal of Mathematics.19(1):243-252. DOI: 10.11650/tjm.19.2015.3873.
  • [8]A. El Khalil, M. Ouanan. (2008). Boundary eigencurve problems involving the -Laplacian operator. Electronic Journal of Differential Equations.78:1-13. DOI: 10.11650/tjm.19.2015.3873.
  • [9]N. B. Rhouma, W. Sayeb. (2012). Existence of solutions for the -Laplacian involving a radon measure. Electronic Journal of Differential Equations.2012(35):1-18. DOI: 10.11650/tjm.19.2015.3873.
  • [10]N. Yoshida. (2010). Forced oscillation criteria for superlinear-sublinear elliptic equations Picone-type inequality. Journal of Mathematical Analysis and Applications.363(2):711-717. DOI: 10.11650/tjm.19.2015.3873.
  • [11]H. Lanchon-Ducauquis, C. Tulita, C. Meuris. Modelisation du transfert thermique dans I'He II. :15-17. DOI: 10.11650/tjm.19.2015.3873.
  • [12]D. Partridge. (2013). Numerical modelling of glaciers: moving meshes and data assimilation [Ph.D. thesis]. DOI: 10.11650/tjm.19.2015.3873.
  • [13]M. C. Pélissier. (1975). Sur Quelques Problèmes Non Linéaires en Glaciologie. DOI: 10.11650/tjm.19.2015.3873.
  • [14]N. Ghoussoub. (1993). Duality and Perturbation Methods in Critical Point Theory. DOI: 10.11650/tjm.19.2015.3873.
  • [15]K. C. Chang. (1981). Variational methods for non-differentiable functionals and their applications to partial differential equations. Journal of Mathematical Analysis and Applications.80(1):102-129. DOI: 10.11650/tjm.19.2015.3873.
  • [16]D. G. Costa, J. V. Gonçalves. (1990). Critical point theory for nondifferentiable functionals and applications. Journal of Mathematical Analysis and Applications.153(2):470-485. DOI: 10.11650/tjm.19.2015.3873.
  • [17]I. Ekeland. (1972). On the variational principle. Cahiers de Mathématique de la Décision(7217). DOI: 10.11650/tjm.19.2015.3873.
  • [18]I. Ekeland. (1974). On the variational principle. Journal of Mathematical Analysis and Applications.47:324-353. DOI: 10.11650/tjm.19.2015.3873.
  • [19]G. Dincă, P. Jebelean, J. Mawhin. (1999). Variational and Topological Methods for Dirichlet Problems with p-Laplacian. DOI: 10.11650/tjm.19.2015.3873.
  • [20]M. M. Vainberg. (1964). Variational Methods in the Study of Nonlinear Operators. DOI: 10.11650/tjm.19.2015.3873.
  • [21]C. Meghea, I. Meghea. (2013). Treatise on Differential Calculus and Integral Calculus for Mathematicians, Physicists, Chemists and Engineers in Ten Volumes.2. DOI: 10.11650/tjm.19.2015.3873.
  • [22]H. Brezis, L. Nirenberg. (1989). A minimization problem with critical exponent and non-zero data. Symmetry in Nature, Scuola Norm. Sup. Pisa:129-140. DOI: 10.11650/tjm.19.2015.3873.
  文献评价指标  
  下载次数:21次 浏览次数:16次