期刊论文详细信息
Journal of Space Weather and Space Climate
Progress in space weather modeling in an operational environment
Ari Viljanen1,12  Peter Velinov1,13  Yurdanur Tulunay1,10  Rami Qahwaji6  Alexander Potapov4  Marco Pietrella1  Marlon Núñez5  Andrei Mikhailov9  Ivan Kutiev1,13  Norbert Jakowski7  Tatiana Egorova2  Véronique Delouille8  Consuelo Cid1,11  Nicolas Bergeot8  Anna Belehaki3  Ioanna Tsagouri3 
[1] Istituto Nazionale di Geofisica e Vulcanologia,Rome,Italy;Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Davos,Switzerland;National Observatory of Athens, P. Penteli,Greece;Institute of Solar-Terrestrial Physics SB RAS,Irkutsk,Russia;Universidad de Málaga,Málaga,Spain;University of Bradford,Bradford,UK;German Aerospace Center, Institute of Communications and Navigation,Neustrelitz,Germany;Royal Observatory of Belgium,Brussels,Belgium;Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region,Russia;Middle East Technical University,Ankara,Turkey;Universidad de Alcalá,Alcalá de Henares,Spain;Finnish Meteorological Institute,Helsinki,Finland;Bulgarian Academy of Sciences,Sofia,Bulgaria
关键词: space environment;    services;    forecasting;    modelling;    space weather;   
Others  :  800644
DOI  :  doi:10.1051/swsc/2013037
 received in 2012-06-19, accepted in 2013-03-10,  发布年份 2013
PDF
【 摘 要 】

This paper aims at providing an overview of latest advances in space weather modeling in an operational environment in Europe, including both the introduction of new models and improvements to existing codes and algorithms that address the broad range of space weather’s prediction requirements from the Sun to the Earth. For each case, we consider the model’s input data, the output parameters, products or services, its operational status, and whether it is supported by validation results, in order to build a solid basis for future developments. This work is the output of the Sub Group 1.3 “Improvement of operational models” of the European Cooperation in Science and Technology (COST) Action ES0803 “Developing Space Weather Products and services in Europe” and therefore this review focuses on the progress achieved by European research teams involved in the action.

【 授权许可】

   
© I. Tsagouri et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707200630402.pdf 4383KB PDF download
Fig. 13. 40KB Image download
Fig. 12. 50KB Image download
Fig. 11. 160KB Image download
Fig. 10. 53KB Image download
Fig. 9. 89KB Image download
Fig. 8. 54KB Image download
Fig. 7. 61KB Image download
Fig. 6. 61KB Image download
Fig. 5. 44KB Image download
Fig. 4. 31KB Image download
Fig. 3. 22KB Image download
Fig. 2. 51KB Image download
Fig. 1. 68KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

【 参考文献 】
  • [1]Aguado, J., C. Cid, E. Saiz, and Y. Cerrato, Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res., 115, A07220, DOI: 10.1029/2009JA014658, 2010.
  • [2]Ahmed, O.W., R. Qahwaji, T. Colak, P.A. Higgins, P.T. Gallagher, and D. Shaun Bloomfield, Solar flare prediction using advanced feature extraction, machine learning, and feature selection, Sol. Phys., 283 (1), 157–175, DOI: 10.1007/s11207-011-9896-1, 2013.
  • [3]Andonov, B., P. Muhtarov and I. Kutiev, Analogue model relating kp index to solar wind parameter, J. Atmos. Sol. Terr. Phys., 66 (11), 927, 2004.
  • [4]Aran, A., B. Sanahuja, and D. Lario, SOLPENCO: A solar particle engineering code, Adv. Space Res., 37 (6), 1240, 2006.
  • [5]Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu, STORM: An empirical storm time ionospheric correction model: 1. Model description, Radio Sci., 37 (5), 1070, DOI: 10.1029/2001RS002467, 2002.
  • [6]Araujo-Pradere, E.A., Transitioning space weather models into operations: The basic building blocks, Space Weather, 7, S10006, DOI: 10.1029/2009SW000524, 2009.
  • [7]Arge, C.N., J.G. Luhmann, D. Odstrcil, C.J. Schrijver, and Y. Li, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys., 66 (15–16), 1295–1309, 2004. [NASA ADS]
  • [8]Balch, C.C., Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model, Space Weather, 6, S01001, DOI: 10.1029/2007SW000337, 2008.
  • [9]Barra, V., V. Delouille, M. Kretzschmar, and J.F. Hochedez, Fast and robust segmentation of solar EUV images: algorithm and results for solar cycle 23, Astron. Astrophys., 505 (1), 361–371, 2009. [NASA ADS]
  • [10]Belehaki, A., and J. Lilensten, COST724: Conclusions and Way Ahead, Edited by Jean, Lilensten, Anna Belehaki, Mauro Messerotti, Rami Vainio, and Jurgen Watermann, COST 724 Final Report: Developing the Scientific Basis for Monitoring, Modelling, and Predicting Space Weather, COST Office, Luxembourg, ISBN 978-92-898-0044-0, 2008.
  • [11]Belehaki, A., N. Jakowski, and B. Reinisch, Comparison of Ionospheric ionization measurements over Athens using ground ionosonde and GPS derived TEC values, Radio Sci., 38 (6), DOI: 10.1029/2003RS002868, 2003.
  • [12]Belehaki, A., I. Kutiev, N. Jakowski, and S. Stankov, Comparison of the topside ionosphere scale height determined by topside sounders model and bottomside Digisonde profiles, Adv. Space Res., 37 (5), 963–966, 2006a.
  • [13]Belehaki, A., Lj. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather, 4, S12002, DOI: 10.1029/2006SW000270, 2006b.
  • [14]Belehaki, A., L. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project, Acta Geophys., 55 (3), 398–409, 2007. [NASA ADS]
  • [15]Belehaki, A., I. Kutiev, B. Reinisch, N. Jakowski, P. Marinov, I. Galkin, C. Mayer, I. Tsagouri, and T. Herekakis, Verification of the TSMP-assisted Digisonde (TaD) topside profiling technique, Acta Geophys., 58 (3), 432–452, DOI: 10.2478/s11600-009-0052-3, 2010.
  • [16]Belehaki, A., I. Stanislawska, and J. Lilensten, An overview of ionosphere – thermosphere models available for space weather purposes, Space Sci. Rev., 147, 271–313, DOI: 10.1007/s11214-009-9510-0, 2009a.
  • [17]Belehaki, A., J. Watermann, J. Lilensten, A. Glover, M. Hapgood, M. Messerotti, R. van der Linden, and H. Lundstedt, Renewed support dawns in Europe: An action to develop space weather products and services, Space Weather, 7, S03001, 2009b.
  • [18]Belehaki, A., I. Tsagouri, and P. Marinov, An improved model for operational specification of the electron density structure up to GNSS orbits assisted by Digisonde data, Edited by J.M., Goodman (Editor-in-Chief), Proceedings of the 13th International Ionospheric Effects Symposium 2011, pp. 204–211, Alexandria, US, May 17–19, 2011.
  • [19]Belehaki, A., I. Tsagouri, I. Kutiev, P. Marinov, and S. Fidanova, Upgrades to the topside sounders model assisted by Digisonde (TaD) and its validation at the topside ionosphere, J. Space Weather Space Clim., 2, A20, 2012.
  • [20]Bergeot, N., C. Bruyninx, P. Defraigne, S. Pireaux, J. Legrand, E. Pottiaux, and Q. Baire, Impact of the Halloween 2003 ionospheric storm on kinematic GPS positioning in Europe, GPS Solut., 15 (2), 171, DOI: 10.1007/s10291-010-0181-9, 2011.
  • [21]Bourdarie, S., D. Boscher, T. Beutier, J.A. Sauvaud, M. Blanc, and R. Friedel, A Physic Based Model of the Radiation Belt Flux at the Day Timescale, Edited by W., Burke, and T.-D. Guyenne, Proceedings of the Symposium on Environment Modelling for Space-Based Applications, Eur. Space Agency Spec. Publ., ESA SP-392, pp. 159–163, 1996.
  • [22]Bruinsma, S.L., N. Sánchez-Ortiz, E. Olmedo, and N. Guijarro, Evaluation of the DTM-2009 thermosphere model for benchmarking purposes, J. Space Weather Space Clim., 2, A04, DOI: 10.1051/swsc/2012005, 2012.
  • [23]Bruyninx, C., H. Habrich, W. Söhne, A. Kenyeres, G. Stangl, and C. Völksen, Enhancement of the EUREF Permanent Network Services and Products, Geodesy for Planet Earth, IAG Symposia Series, 136, 27–35, DOI: 10.1007/978-3-642-20338-1_4, 2012.
  • [24]Cid, C., E. Saiz, and Y. Cerrato, Comment on “Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ 250 nT) during solar cycle 23”, Geophys. Res. Lett., 35, L21107, DOI: 10.1029/2008GL034731, 2008.
  • [25]Colak, T., and R. Qahwaji, ASAP: hybrid computer platform using machine learning and solar imaging for automated prediction of significant solar flares, Space Weather, 7, S06001, DOI: 10.1029/2008SW000401, 2009. [NASA ADS]
  • [26]Colak, T., and R. Qahwaji, Prediction of extreme ultraviolet variability experiment (EVE)/extreme ultraviolet spectro-photometer (ESP) irradiance from solar dynamics observatory (SDO)/atmospheric imaging assembly (AIA) images using fuzzy image processing and machine learning, Sol Phys., 283 (1), 143–156, DOI: 10.1007/s11207-011-9880-9, 2013. [NASA ADS]
  • [27]Colak, T., R. Qahwaji, S. Ipson, and H.H. Ugail, Representation of solar features in 3D for creating visual solar catalogues, Adv. Space Res., Special Issue on Space Weather Advances, 47 (12), 2092–2104, 2011. [NASA ADS]
  • [28]Corney, R.C., G.B. Burns, K. Michael, A.V. Frank-Kamenetsky, O.A. Troshichev, E.A. Bering, V.O. Papitashvili, A.M. Breed, and M.L. Duldig, The influence of polar-cap convection on the geoelectric field at Vostok, Antarctica, J. Atmos. Sol. Terr. Phys., 65, 345–354, 2003.
  • [29]Degtyarev, V.I., I.P. Kharchenko, A.S. Potapov, B. Tsegmed, and S.E. Chudnenko, Qualitative estimation of magnetic storm efficiency in producing relativistic electron flux in the Earth’s outer radiation belt using geomagnetic pulsations data, Adv. Space Res., 43 (5), 829–836, DOI: 10.1016/j.asr.2008.07.004, 2009.
  • [30]Degtyarev, V.I., I.P. Kharchenko, A.S. Potapov, B. Tsegmed, and S.E. Chudnenko, The relation between geomagnetic pulsations and an increase in the fluxes of geosynchronous relativistic electrons during geomagnetic storms, Geomag. Aeron., 50 (7), 885–893, 2010.
  • [31]Delouille, V., B. Mampaey, C. Verbeeck, and R. de Visscher, The SPoCA-suite: a software for extraction and tracking of active regions and coronal holes on EUV images, Arxive-prints, 1208.1483, 2012.
  • [32]Dow, J.M., R.E. Neilan, and C. Rizos, The international GNSS service in a changing landscape of Global Navigation Satellite Systems, J. Geod., 83, 191–198, DOI: 10.1007/s00190-008-0300-3, 2009.
  • [33]Egorova, T., E. Rozanov, Y. Ozolin, A. Shapiro, M. Calisto, T. Peter, and W. Schmutz, The atmospheric effects of October 2003 solar proton event simulated with the chemistry-climate model SOCOL using complete and parameterized ion chemistry, J. Atmos. Sol. Terr. Phys., 1073 (2–3), 356–365, DOI: 10.1016/j.jastp.2010.01.009, 2011.
  • [34]Feltens, J., M. Angling, N. Jackson-Booth, N. Jakowski, M. Hoque, M. Hernández-Pajares, A. Aragón-Àngel, R. Orús, and R. Zandbergen, Comparative testing of four ionospheric models driven with GPS measurements, Radio Sci., 46, RS0D12, DOI: 10.1029/2010RS004584, 2011.
  • [35]Fuller-Rowell, T., E.A. Araujo-Pradere, C. Minter, M. Codrescu, P. Spencer, D. Robertson, and A.R. Jacobson, US-TEC: a new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data, Radio Sci., 41, RS6003, DOI: 10.1029/2005RS003393, 2006.
  • [36]Gulyaeva, T.L., and N. Jakowski, Validation of consistency of GPS/NTCM2 and SMI-96 derived maps of total electron content through the ionosphere and plasmasphere, Edited by R., Hanbaba, and B.A. de la Morena, Proceedings of the 3rd COST251 Workshop, September, 1998, pp. 109–118, 1999.
  • [37]Higgins, P.A., P.T. Gallagher, R.T.J. McAteer, and D.S. Bloomfield, Solar magnetic feature detection and tracking for space weather monitoring, Adv. Space Res., Space weather advances, 47 (12), 2105–2117, 2011. [NASA ADS]
  • [38]Hochegger, G., B. Nava, S.M. Radicella, and R. Leitinger, A family of ionospheric models for different uses, Phys. Chem. Earth, 25 (4), 307–310, DOI: 10.1016/S1464-1917(00)00022-2, 2000.
  • [39]Hoque, M.M., and N. Jakowski, A new global empirical NmF2 model for operational use in radio systems, Radio Sci., 46, RS6015, DOI: 10.1029/2011RS004807, 2011.
  • [40]Hoque, M.M., and N. Jakowski, A new global model for the ionospheric F2 peak height for radio wave propagation, Ann. Geophys., 30, 787–809, DOI: 10.5194/angeo-30-797-2012, 2012.
  • [41]Houminer, Z., J.A. Bennett, and P.L. Dyson, Real-time ionospheric model updatingJournal of Electrical and Electronics Engineering, Australia, IE Aust. & IREE Aust., 13 (2), 99–104, 1993.
  • [42]Jacchia, L.G., and J. Slowey, Accurate drag determinations for eight artificial satellites: atmospheric densities and temperatures, Smithsonian Contrib. Astrophys., 8, 1, 1963.
  • [43]Jakowski, N., TEC Monitoring by Using Satellite Positioning Systems, Edited by H., Kohl, R. Ruester, and K. Schlegel, Modern Ionospheric Science, Eur. Geophys. Soc., Katlenburg‐Lindau, Germany, pp. 371–390, 1996.
  • [44]Jakowski, N., E. Sardón, and S. Schlueter, GPS‐based TEC observations in comparison with IRI95 and the European TEC model NTCM2, Adv. Space Res., 22, 803–806, DOI: 10.1016/S0273-1177(98)00101-X, 1998.
  • [45]Jakowski, N., M.M. Hoque, and C. Mayer, A new global TEC model for estimating transionospheric radio wave propagation errors, J. Geod., 85, 965–974, DOI: 10.1007/s00190-011-0455-1, 2011a.
  • [46]Jakowski, N., C. Mayer, M.M. Hoque, and V. Wilken, Total electron content models and their use in ionosphere monitoring, Radio Sci., 46, RS0D18, DOI: 10.1029/2010RS004620, 2011b.
  • [47]Janhunen, P., GUMICS-3: a global ionosphere-magnetosphere coupling simulation with high ionospheric resolution, Proceedings of Environmental Modelling for Space-Based Applications, 18–20 Sep 1996, Eur. Space Agency Spec. Publ., ESA SP-392, 1996.
  • [48]Koutroumbas, K., I. Tsagouri, and A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys., 26 (2), 371–386, 2008.
  • [49]Kutiev, I., and P. Marinov, Topside sounder model of scale height and transition height characteristics of the ionosphere, Adv. Space Res., 39, 759–766, DOI: 10.1016/j.asr.2006.06.013, 2007.
  • [50]Kutiev, I., P. Marinov, and S. Watanabe, Model of topside ionosphere scale height based on topside sounder data, Adv. Space Res., 37 (5), 943–950, 2006.
  • [51]Kutiev, I., P. Muhtarov, B. Andonov, and R. Warnant, Hybrid model for nowcasting and forecasting the K index, J. Atmos. Sol. Terr. Phys., 71, 589–596, DOI: 10.1016/j.jastp.2009.01.005, 2009a.
  • [52]Kutiev, I., P. Marinov, A. Belehaki, B. Reinisch, and N. Jakowski, Reconstruction of topside density profile by using the Topside Sounder Model Profiler and Digisonde data, Adv. Space Res., 43, 1683–1687, 2009b.
  • [53]Kutiev, I., P. Marinov, A. Belehaki, N. Jakowski, B. Reinisch, C. Mayer, and I. Tsagouri, Plasmaspheric electron density reconstruction based on the Topside Sounder Model Profiler, Acta Geophys., 58 (3), 420–431, DOI: 10.2478/s11600-009-0051-4, 2010.
  • [54]Kutiev, I., P. Marinov, S. Fidanova, A. Belehaki, and I. Tsagouri, Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes, J. Space Weather Space Clim., 2, A21, 2012.
  • [55]Kutiev, I., I. Tsagouri, L. Perrone, D. Pancheva, P. Mukhtarov, et al., Solar activity impact on the Earth’s upper atmosphere, J. Space Weather Space Clim., 3, A06, 2013.
  • [56]Lathuillere, C., M. Menvielle, J. Lilensten, T. Amari, and S.M. Radicella, From the Sun’s atmosphere to the Earth’s atmosphere: an overview of scientific models available for space weather developments, Ann. Geophys., 20, 1081–1104, 2002.
  • [57]Lei, F., P.R. Truscott, C.S. Dyer, B. Quaghebeur, D. Heynderickx, P. Nieminen, H. Evans, and E. Daly, MULASSIS: a Geant4-based multilayered shielding simulation tool, IEEE T. Nucl. Sci., 49, 6, 2002.
  • [58]Leitinger, R., M.L. Zhang, and S.M. Radicella, An improved bottomside for the ionospheric electron density model NeQuick, Ann. Geophys., 48 (3), 525–534, 2005.
  • [59]Lilensten, J., T. Clark, and A. Belehaki, Europe’s first space weather think tank, Space Weather, 2, S04001, 2004.
  • [60]Makarova, L.N., A.V. Shirochkov, and K.V. Koptjaeva, The Earth’s magnetopause as an element of the global electric circuit, IEEE T. Nucl. Sci., 38 (3), 156–159, (in Russian), 1998.
  • [61]Mares, V., T. Maczka, G. Leuthold, and W. Ruehm, Air crew dosimetry with a new version of EPCARD, Radiation Protection Dosimetry, 136 (4), 262–266, 2009.
  • [62]Martin, A.R., Spacecraft/Plasma Interactions and Electromagnetic Effects in LEO and Polar Orbits, Final Report for ESA/ESTEC Contract No.7989/88/NL/PB(SC), Vol. 3, 1991.
  • [63]Messenger, C.G., and M.S. Ash, Single Event Phenomena, Chapman & Hall, New York, 1997.
  • [64]Messerotti, M., F. Zuccarello, S.L. Guglielmino, V. Bothmer, J. Lilensten, G. Noci, M. Storini, and H. Lundstedt, Solar weather event modelling and prediction, Space Sci. Rev., 147, 121–185, DOI: 10.1007/s11214-009-9574-x, 2009.
  • [65]Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, 2012.
  • [66]Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routinely observed F2-layer Ne(h) profiles at the geomagnetic equator, J. Space Weather Space Clim., 3, A15, 2013.
  • [67]Muhtarov, P., I. Kutiev, and L. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionopsheric parameters, Inverse Prob., 18, 49–65, 2002.
  • [68]Nava, B., P. Coisson, and S.M. Radicella, A new version of the NeQuick ionosphere electron density model, J. Atmos. Sol. Terr. Phys., 76, 1856–1862, 2008.
  • [69]Núñez, M., Predicting Solar Energetic Proton Events (E > 10 MeV), Space Weather, 9, S07003, DOI: 10.1029/2010SW000640, 2011.
  • [70]Pietrella, M., A short-term ionospheric forecasting empirical regional model (IFERM) to predict the critical frequency of the F2 layer during moderate, disturbed, and very disturbed geomagnetic conditions over the European area, Ann. Geophys., 30, 343–355, DOI: 10.5194/angeo-30-343-2012, 2012.
  • [71]Pizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil, Wang-Sheeley-Arge-Enlil cone model transitions to operations, Space Weather, 9, S03004, DOI: 10.1029/2011SW000663, 2011.
  • [72]Potapov, A.S., and T.N. Polyushkina, Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons, Geomag. Aeron., 50 (8), 28–34, 2010.
  • [73]Pulkkinen, A., M. Hesse, L. Van der Zel, B. Damsky, F. Policelli, D. Fugate, W. Jacobs, and E. Creamer, Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems, Nat. Hazards, 53, 333–345, DOI: 10.1007/s11069-009-9432-x, 2010.
  • [74]Radicella, S.M., and R. Leitinger, The evolution of the DGR approach to model electron density profiles, Adv. Space Res., 27, 35–40, DOI: 10.1016/S0273-1177(00)00138-1, 2001.
  • [75]Reitz, G., and T. Berger, The Matroshka facility – dose determination during an EVA, Radiat. Prot. Dosim., 120, 442–445, 2006.
  • [76]Saiz, E., C. Cid, and Y. Cerrato, Forecasting intense geomagnetic activity using interplanetary magnetic field data, Ann. Geophys., 26, 3989–3998, 2008.
  • [77]Schaer, S., W. Gurtner, and J. Feltens, IONEX: the IONosphere Map EXchange Format version 1, Proceedings of the 1998 IGS analysis centres workshop, ESOC, Darmstadt, Germany, 9–11 Feb, pp. 233–247, 1998.
  • [78]Stanislawska, I., A. Belehaki, N. Jakowski, B. Zolesi, T. Gulyaeva, Lj.R. Cander, B.W. Reinisch, M. Pezzopane, I. Tsagouri, L. Tomasik, and I. Galkin, COST 296 scientific results designed for operational use, Ann. Geophys., 54 (3/4), 423–435, 2009.
  • [79]Tinsley, B.A., G.B. Burns, and L. Zhou, The role of the global electric circuit in solar and internal forcing of clouds and climate, Adv. Space Res., 40, 1126–1139, 2007.
  • [80]Tobiska, W.K., Space Weather Management, AIAA-2009-1494, 2009.
  • [81]Tonev, P., and P.I.Y. Velinov, Conditions for creation of streamers in lower ionosphere above lightning discharges with continuing currents, C.R. Acad. Bulg. Sci., 63 (12), 1787–1794, 2010.
  • [82]Tonev, P.T., and P.I.Y. Velinov, Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes, C.R. Acad. Bulg. Sci., 64 (12), 1733–1742, 2011.
  • [83]Tsagouri, I., Evaluation of the performance of DIAS ionospheric forecasting models, J. Space Weather Space Clim., 1, A02, DOI: 10.1051/swsc/2011110003, 2011.
  • [84]Tsagouri, I., and A. Belehaki, An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response, J. Atmos. Sol. Terr. Phys., 70 (16), 2061–2076, DOI: 10.1016/j.jastp.2008.09.010, 2008.
  • [85]Tsagouri, I., B. Zolesi, A. Belehaki, and L. Cander, Evaluation of the performance of the real-time updated Simplified Ionospheric Regional Model for the European area, J. Atmos. Sol. Terr. Phys., 67, 1137–1146, 2005.
  • [86]Tsagouri, I., K. Koutroumbas, and A. Belehaki, Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Sci., 44, RS0A35, DOI: 10.1029/2008RS004112, 2009.
  • [87]Tsagouri, I., B. Zolesi, Lj.R. Cander, and A. Belehaki, DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe, Acta Geophys., 58 (3), 491–512, 2010.
  • [88]Ünal, I., E.T. Şenalp, A. Yeşil, E. Tulunay, and Y. Tulunay, Performance of IRI based Ionospheric Critical Frequency Computations with reference to Forecasting, Radio Sci., 46, RS1004, DOI: 10.1029/2010RS004428, 2011.
  • [89]Vainio, R., L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, R.B. Horne, G.A. Kovaltsov, K. Kudela, M. Laurenza, S. McKenna-Lawlor, H. Rothkaehl, and I.G. Usoskin, Dynamics of the Earth’s particle radiation environment, Space Sci. Rev., 147, 187–231, DOI: 10.1007/s11214-009-9496-7, 2009. [NASA ADS]
  • [90]Velinov, P.I.Y., and L. Mateev, Improved cosmic ray ionization model for the system ionosphere – atmosphere. Calculation of electron production rate profiles, J. Atmos. Sol. Terr. Phys., 70, 574–582, 2008a. [NASA ADS]
  • [91]Velinov, P.I.Y., and L. Mateev, Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – distribution of galactic CR effects, Adv. Space Res., 42, 1586–1592, 2008b. [NASA ADS]
  • [92]Velinov, P.I.Y., and P. Tonev, Electric currents from thunderstorms to the ionosphere during a solar cycle: quasi-static modeling of the coupling mechanism, Adv. Space Res., 42, 1569–1575, 2008.
  • [93]Velinov, P.I.Y., A. Mishev, and L. Mateev, Model for induced ionization by galactic cosmic rays in the earth atmosphere and ionosphere, Adv. Space Res., 44, 1002–1007, 2009.
  • [94]Velinov, P.I.Y., S. Asenovski, and L. Mateev, Simulation of cosmic ray ionization profiles in the middle atmosphere and lower ionosphere with account to characteristic energy intervals, C.R. Acad. Bulg. Sci., 64 (9), 1303–1310, 2011a.
  • [95]Velinov, P.I.Y., A. Mishev, S. Asenovski, and L. Mateev, New operational models for cosmic ray ionization in space physics, Bulg. J. Phys., 38, 264–273, 2011b.
  • [96]Velinov, P.I.Y., S. Asenovski, and L. Mateev, Improved cosmic ray ionization model for the ionosphere and atmosphere (CORIMIA) with account of 6 characteristic intervals, C.R. Acad. Bulg. Sci., 65, 6, 2012a.
  • [97]Velinov, P.I.Y., S. Asenovski, and L. Mateev, Ionization of anomalous cosmic rays in ionosphere and middle atmosphere simulated by CORIMIA code, C.R. Acad. Bulg. Sci., 65, 7, 2012b.
  • [98]Velinov, P.I.Y., S. Asenovski, and L. Mateev, Numerical calculation of cosmic ray ionization rate profiles in the middle atmosphere and lower ionosphere with relation to characteristic energy intervals, Acta Geophys., 61 (2), 494–509, 2013.
  • [99]Verbeeck, C., P. Higgins, T. Colak, T. Watson, V. Delouille, B. Mampaey, and R. Qahwaji, A multi-wavelength analysis of active regions and sunspots by comparison of automatic detection, Sol. Phys., 283 (1), 67–95, DOI: 10.1007/s11207-011-9859-6, 2013. [NASA ADS]
  • [100]Viljanen, A., A. Pulkkinen, R. Pirjola, K. Pajunpää, P. Posio, and A. Koistinen, Recordings of geomagnetically induced currents and a nowcasting service of the Finnish natural gas pipeline system, Space Weather, 4, S10004, DOI: 10.1029/2006SW000234, 2006.
  • [101]Viljanen, A., R. Pirjola, M. Wik, A. Ádám, E. Prácser, Ya. Sakharov, and J. Katkalov, Continental scale modelling of geomagnetically induced currents, J. Space Weather Space Clim., 2, A17, DOI: http://dx.doi.org/10.1051/swsc/2012017, 2012.
  • [102]Watermann, J., R. Vainio, J. Lilensten, A. Belehaki, and M. Messerotti, The state of space weather scientific modeling – an introduction, Space Sci. Rev., 147, 111–120, DOI: 10.1007/s11214-009-9576-8, 2009a.
  • [103]Watermann, J., P. Wintoft, B. Sanahuja, E. Saiz, S. Poedts, M. Palmroth, A. Milillo, F.-A. Metallinou, C. Jacobs, N.Y. Ganushkina, I.A. Daglis, C. Cid, Y. Cerrato, G. Balasis, A.D. Aylward, and A. Aran, Models of solarwind structures and their interaction with the Earth’s space environment, Space Sci. Rev., 147, 233–270, DOI: 10.1007/s11214-009-9494-9, 2009b.
  • [104]Wing, S., J.R. Johnson, J. Jen, C.-I. Meng, D.G. Sibeck, K. Bechtold, J. Freeman, K. Costello, M. Balikhin, and K. Takahashi, Kp forecast models, J. Geophys. Res., 110, A04203, DOI: 10.1029/2004JA010500, 2005.
  • [105]Wintoft, P., M. Wik, H. Lundstedt, and L. Eliasson, Predictions of local ground geomagnetic field fluctuations during the 7–10 November 2004 events studied with solar wind driven models, Ann. Geophys., 23, 3095–3101, SRef-ID: 1432-0576/ag/2005-23-3095, 2005.
  • [106]Wrenn, G.L., Time-weighted accumulations ap(τ) and Kp(τ), J. Geophys. Res., 92, 10125–10129, 1987.
  • [107]Wrenn, G.L., and A.S. Rodger, Geomagnetic modification of the mid-latitude ionosphere: toward a strategy for the improved forecasting of foF2, Radio Sci., 24, 99–111, 1989.
  • [108]Wu, J., and P.J. Wilkinson, Time-Weighted magnetic indices as predictors of ionospheric behaviour, J. Atm. Sol. Terr. Phys, 57 (14), 1763–1770, 1995.
  • [109]Zolesi, B., Lj.R. Cander, and G. De Franceschi, Simplified ionospheric regional model for telecommunication applications, Radio Sci., 28 (4), 603–612, 1993.
  • [110]Zolesi, B., A. Belehaki, I. Tsagouri, and Lj.R. Cander, Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Sci., 39, RS2011, DOI: 10.1029/2003RS002936, 2004.
  文献评价指标  
  下载次数:82次 浏览次数:4次