期刊论文详细信息
Advances in Astronomy
Testing the No-Hair Theorem with Sgr A*
Review Article
Tim Johannsen1 
[1] Physics Department, University of Arizona, 1118 E. 4th Street, Tucson, AZ 85721, USA, arizona.edu
Others  :  1267893
DOI  :  10.1155/2012/486750
 received in 2011-05-16, accepted in 2011-07-05,  发布年份 2011
PDF
【 摘 要 】

The no-hair theorem characterizes the fundamental nature of black holes in general relativity. This theorem can be tested observationally by measuring the mass and spin of a black hole as well as its quadrupole moment, which may deviate from the expected Kerr value. Sgr A*, the supermassive black hole at the center of the Milky Way, is a prime candidate for such tests thanks to its large angular size, high brightness, and rich population of nearby stars. In this paper, I discuss a new theoretical framework for a test of the no-hair theorem that is ideal for imaging observations of Sgr A* with very long baseline interferometry (VLBI). The approach is formulated in terms of a Kerr-like spacetime that depends on a free parameter and is regular everywhere outside of the event horizon. Together with the results from astrometric and timing observations, VLBI imaging of Sgr A* may lead to a secure test of the no-hair theorem.

【 授权许可】

CC BY   
Copyright © 2012 Tim Johannsen. 2012

【 预 览 】
附件列表
Files Size Format View
486750.pdf 2163KB PDF download
Figure 7 14KB Image download
(c) 25KB Image download
(b) 27KB Image download
(a) 27KB Image download
(c) 20KB Image download
(b) 23KB Image download
(a) 16KB Image download
(b) 23KB Image download
(a) 28KB Image download
Figure 3 36KB Image download
(b) 42KB Image download
(a) 39KB Image download
(b) 25KB Image download
(a) 20KB Image download
【 图 表 】

(a)

(b)

(a)

(b)

Figure 3

(a)

(b)

(a)

(b)

(c)

(a)

(b)

(c)

Figure 7

【 参考文献 】
  • [1]W. Israel. (1967). Event horizons in static vacuum space-times. Physical Review.164(5):1776-1779. DOI: 10.1103/PhysRev.164.1776.
  • [2]W. Israel. (1968). Event horizons in static electrovac space-times. Communications in Mathematical Physics.8(3):245-260. DOI: 10.1103/PhysRev.164.1776.
  • [3]B. Carter. (1971). Axisymmetric black hole has only two degrees of freedom. Physical Review Letters.26(6):331-333. DOI: 10.1103/PhysRev.164.1776.
  • [4]S. W. Hawking. (1972). Black holes in general relativity. Communications in Mathematical Physics.25:152. DOI: 10.1103/PhysRev.164.1776.
  • [5]B. Carter. (1973). Black Holes. DOI: 10.1103/PhysRev.164.1776.
  • [6]D. C. Robinson. (1975). Uniqueness of the Kerr black hole. Physical Review Letters.34(14):905-906. DOI: 10.1103/PhysRev.164.1776.
  • [7]R. Geroch. (1970). Multipole moments. II. Curved space. Journal of Mathematical Physics.11(8):2580-2588. DOI: 10.1103/PhysRev.164.1776.
  • [8]R. O. Hansen. (1974). Multipole moments of stationary spacetimes. Journal of Mathematical Physics.15(1):46-53. DOI: 10.1103/PhysRev.164.1776.
  • [9]D. Psaltis. (2006). Compact Stellar X-Ray Sources. DOI: 10.1103/PhysRev.164.1776.
  • [10]F. D. Ryan. (1995). Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. Physical Review D.52(10):5707-5718. DOI: 10.1103/PhysRev.164.1776.
  • [11]F. D. Ryan. (1997). Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral. Physical Review D.56(4):1845-1855. DOI: 10.1103/PhysRev.164.1776.
  • [12]F. D. Ryan. (1997). Scalar waves produced by a scalar charge orbiting a massive body with arbitrary multipole moments. Physical Review D.56(12):7732-7739. DOI: 10.1103/PhysRev.164.1776.
  • [13]L. Barack, C. Cutler. (2004). LISA capture sources: approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Physical Review D.69(8). DOI: 10.1103/PhysRev.164.1776.
  • [14]L. Barack, C. Cutler. (2007). Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes. Physical Review D.75(4). DOI: 10.1103/PhysRev.164.1776.
  • [15]J. Brink. (2008). Spacetime encodings. I. A spacetime reconstruction problem. Physical Review D.78-8. DOI: 10.1103/PhysRev.164.1776.
  • [16]C. Li, G. Lovelace. (2008). Generalization of Ryan's theorem: probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals. Physical Review D.77-10. DOI: 10.1103/PhysRev.164.1776.
  • [17]T. A. Apostolatos, G. Lukes-Gerakopoulos, G. Contopoulos. (2009). How to observe a non-kerr spacetime using gravitational waves. Physical Review Letters.103(11). DOI: 10.1103/PhysRev.164.1776.
  • [18]N. A. Collins, S. A. Hughes. (2004). Towards a formalism for mapping the spacetimes of massive compact objects: bumpy black holes and their orbits. Physical Review D.69. DOI: 10.1103/PhysRev.164.1776.
  • [19]S. J. Vigeland, S. A. Hughes. (2010). Spacetime and orbits of bumpy black holes. Physical Review D.81(2). DOI: 10.1103/PhysRev.164.1776.
  • [20]K. Glampedakis, S. Babak. (2006). Mapping spacetimes with LISA: inspiral of a test body in a “quasi-Kerr” field. Classical and Quantum Gravity.23(12, article 013):4167-4188. DOI: 10.1103/PhysRev.164.1776.
  • [21]J. R. Gair, C. Li, I. Mandel. (2008). Observable properties of orbits in exact bumpy spacetimes. Physical Review D.77(2)-23. DOI: 10.1103/PhysRev.164.1776.
  • [22]T. Johannsen, D. Psaltis. (2010). Testing the no-hair theorem with observations in the electromagnetic spectrum. I. Properties of a Quasi-Kerr spacetime. Astrophysical Journal.716(1):187-197. DOI: 10.1103/PhysRev.164.1776.
  • [23]T. Johannsen, D. Psaltis. (2010). Testing the no-hair theorem with observations in the electromagnetic spectrum. II. Black hole images. Astrophysical Journal.718(1):446. DOI: 10.1103/PhysRev.164.1776.
  • [24]T. Johannsen, D. Psaltis. (2011). Testing the no-hair theorem with observations in the electromagnetic spectrum. III. Quasi-periodic variability. Astrophysical Journal.726(1):11. DOI: 10.1103/PhysRev.164.1776.
  • [25]T. Johannsen, D. Psaltis. (2011). Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. Advances in Space Research.47:528. DOI: 10.1103/PhysRev.164.1776.
  • [26]D. Psaltis, T. Johannsen. A ray-tracing algorithm for spinning compact object spacetimes with arbitrary quadrupole moments. I. Quasi-kerr black holes. . DOI: 10.1103/PhysRev.164.1776.
  • [27]C. Bambi, E. Barausse. (2011). Constraining the quadrupole moment of stellar-mass black hole candidates with the continuum fitting method. Astrophysical Journal.731:121. DOI: 10.1103/PhysRev.164.1776.
  • [28]C. Bambi. (2011). Constraint on the quadrupole moment of super-massive black hole candidates from the estimate of the mean radiative efficiency of AGN. Physical Review D.D 83-4. DOI: 10.1103/PhysRev.164.1776.
  • [29]C. M. Will. (2008). Testing the general relativistic “no-hair” theorems using the galactic center black hole Sgr A*. Astrophysical Journal.674:L25. DOI: 10.1103/PhysRev.164.1776.
  • [30]D. Merritt, T. Alexander, S. Mikkola, C. M. Will. et al.(2010). Testing properties of the Galactic center black hole using stellar orbits. Physical Review D.81(6). DOI: 10.1103/PhysRev.164.1776.
  • [31]N. Wex, S. M. Kopeikin. (1999). Frame dragging and other precessional effects in black hole pulsar binaries. Astrophysical Journal.514(1):388-401. DOI: 10.1103/PhysRev.164.1776.
  • [32]V. S. Manko, I. D. Novikov. (1992). Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments. Classical and Quantum Gravity.9(11, article 013):2477-2487. DOI: 10.1103/PhysRev.164.1776.
  • [33]S. J. Vigeland, N. Yunes, L. C. Stein. (2011). Bumpy black holes in alternative theories of gravity. Physical Review D.83-16. DOI: 10.1103/PhysRev.164.1776.
  • [34]T. Johannsen, D. Psaltis. (2011). Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Physical Review D.83-16. DOI: 10.1103/PhysRev.164.1776.
  • [35]S. A. Hughes. (Sort of) testing relativity with extreme mass ratio inspirals. .873:233-240. DOI: 10.1103/PhysRev.164.1776.
  • [36]D. Psaltis, T. Johannsen. (2011). Sgr A*: the optimal testbed of strong-field gravity. Journal of Physics.283. DOI: 10.1103/PhysRev.164.1776.
  • [37]A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu. et al.(2008). Measuring distance and properties of the milky way's central supermassive black hole with stellar orbits. Astrophysical Journal.689(2):1044-1062. DOI: 10.1103/PhysRev.164.1776.
  • [38]S. Gillessen, F. Eisenhauer, S. Trippe. (2009). Monitoring stellar orbits around the massive black hole in the galactic center. Astrophysical Journal.692:1075. DOI: 10.1103/PhysRev.164.1776.
  • [39]S. S. Doeleman, J. Weintroub, A. E. E. Rogers, R. Plambeck. et al.(2008). Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature.455(7209):78-80. DOI: 10.1103/PhysRev.164.1776.
  • [40]K. Schwarzschild. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften.1:189-196. DOI: 10.1103/PhysRev.164.1776.
  • [41]R. P. Kerr. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters.11(5):237-238. DOI: 10.1103/PhysRev.164.1776.
  • [42]J. B. Hartle. (1967). Slowly Rotating Relativistic Stars. I. Equations of Structure. Astrophysical Journal.150:1005. DOI: 10.1103/PhysRev.164.1776.
  • [43]J. B. Hartle, K. S. Thorne. (1968). Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars. Astrophysical Journal.153:807. DOI: 10.1103/PhysRev.164.1776.
  • [44]A. Tomimatsu, H. Sato. (1972). New exact solution for the gravitational field of a spinning mass. Physical Review Letters.29(19):1344-1345. DOI: 10.1103/PhysRev.164.1776.
  • [45]A. Tomimatsu, H. Sato. (1973). New series of exact solutions for gravitational fields of spinning masses. Progress of Theoretical Physics.50(1):95-110. DOI: 10.1103/PhysRev.164.1776.
  • [46]H. Stephani, D. Kramer, M. A. H. MacCallum, C. Hoenselaers. et al.(2003). Exact Solutions of Einstein’s Field Equations. DOI: 10.1103/PhysRev.164.1776.
  • [47]I. Hauser, F. J. Ernst. (1981). Proof of a Geroch conjecture. Journal of Mathematical Physics.22(5):1051-1063. DOI: 10.1103/PhysRev.164.1776.
  • [48]C. Hoenselaers, W. Kinnersley, B. C. Xanthopoulos. (1979). Symmetries of the stationary Einstein–Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments. Journal of Mathematical Physics.20(8):2530. DOI: 10.1103/PhysRev.164.1776.
  • [49]R. Geroch. (1971). A method for generating solutions of Einstein's equations. Journal of Mathematical Physics.12(6):918-924. DOI: 10.1103/PhysRev.164.1776.
  • [50]R. Geroch. (1972). A method for generating new solutions of Einstein's equation. II. Journal of Mathematical Physics.13(3):394-404. DOI: 10.1103/PhysRev.164.1776.
  • [51]R. Beig, W. Simon. (1980). Proof of a multipole conjecture due to Geroch. Communications in Mathematical Physics.78:75. DOI: 10.1103/PhysRev.164.1776.
  • [52]R. Beig, W. Simon. (1981). On the multipole expansion for stationary space-times. Proceedings of the Royal Society A.376:333-341. DOI: 10.1103/PhysRev.164.1776.
  • [53]N. R. Sibgatullin. (1991). Oscillations and Waves in Strong Gravitational and Electromagnetic Fields. DOI: 10.1103/PhysRev.164.1776.
  • [54]V. S. Manko, N. R. Sibgatullin. (1993). Construction of exact solutions of the Einstein-Maxwell equations corresponding to a given behaviour of the Ernst potentials on the symmetry axis. Classical and Quantum Gravity.10(7, article 014):1383-1404. DOI: 10.1103/PhysRev.164.1776.
  • [55]E. M. Butterworth, J. R. Ipser. (1976). On the structure and stability of rapidly rotating fluid bodies in general relativity. I - The numerical method for computing structure and its application to uniformly rotating homogeneous bodies. Astrophysical Journal.204:200-223. DOI: 10.1103/PhysRev.164.1776.
  • [56]N. Stergioulas, J. L. Friedman. (1995). Comparing models of rapidly rotating relativistic stars constructed by two numerical methods. Astrophysical Journal.444(1):306-311. DOI: 10.1103/PhysRev.164.1776.
  • [57]W. G. Laarakkers, E. Poisson. (1999). Quadrupole moments of rotating neutron stars. Astrophysical Journal.512(1):282-287. DOI: 10.1103/PhysRev.164.1776.
  • [58]E. Berti, F. White, A. Maniopoulou, M. Bruni. et al.(2005). Rotating neutron stars: an invariant comparison of approximate and numerical space-time models. Monthly Notices of the Royal Astronomical Society.358(3):923-938. DOI: 10.1103/PhysRev.164.1776.
  • [59]C. Cadeau, S. M. Morsink, D. Leaky, S. S. Campbell. et al.(2007). Light curves for rapidly rotating neutron stars. Astrophysical Journal.654(1 I):458-469. DOI: 10.1103/PhysRev.164.1776.
  • [60]C. F. Sopuerta, N. Yunes. (2009). Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity. Physical Review D.80(6). DOI: 10.1103/PhysRev.164.1776.
  • [61]D.-C. Dai, D. Stojkovic. Analytic solution for a static black hole in RSII model. . DOI: 10.1103/PhysRev.164.1776.
  • [62]N. Yunes, L. C. Stein. (2011). Effective gravitational wave stress-energy tensor in alternative theories of gravity. Physical Review D.83:4002. DOI: 10.1103/PhysRev.164.1776.
  • [63]E. Barausse, T. Jacobson, T. P. Sotiriou. (2011). Black holes in Einstein-aether and Horava-Lifshitz gravity. General Relativity and Quantum Cosmology.83. DOI: 10.1103/PhysRev.164.1776.
  • [64]P. Figueras, T. Wiseman. Gravity and large black holes in Randall-Sundrum II braneworlds. . DOI: 10.1103/PhysRev.164.1776.
  • [65]T. Johannsen. . DOI: 10.1103/PhysRev.164.1776.
  • [66]A. E. Broderick, V. L. Fish, S. S. Doeleman, A. Loeb. et al.(2009). Estimating the parameters of sagittarius A*'s accretion flow via millimeter vlbi. Astrophysical Journal.697(1):45-54. DOI: 10.1103/PhysRev.164.1776.
  • [67]A. E. Broderick, V. L. Fish, S. S. Doeleman, A. Loeb. et al.(2011). Evidence for low black hole spin and physically motivated accretion models from millimeter-VLBI observations of sagittarius A*. Astrophysical Journal.735:110. DOI: 10.1103/PhysRev.164.1776.
  • [68]J. M. Bardeen. (1973). Black Holes. DOI: 10.1103/PhysRev.164.1776.
  • [69]H. Falcke, F. Melia, E. Agol. (2000). Viewing the shadow of the black hole at the Galactic center. Astrophysical Journal.528(1):L13-L16. DOI: 10.1103/PhysRev.164.1776.
  • [70]A. E. Broderick, A. Loeb. (2005). Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*. Monthly Notices of the Royal Astronomical Society.363(2):353-362. DOI: 10.1103/PhysRev.164.1776.
  • [71]A. E. Broderick, A. Loeb. (2006). Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. Monthly Notices of the Royal Astronomical Society.367(3):905-916. DOI: 10.1103/PhysRev.164.1776.
  • [72]V. L. Fish, S. S. Doeleman. (2009). IAU Symp. 261, Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis. DOI: 10.1103/PhysRev.164.1776.
  • [73]A. E. Broderick, A. Loeb. (2006). Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. Monthly Notices of the Royal Astronomical Society.367(3):905-916. DOI: 10.1103/PhysRev.164.1776.
  • [74]A. E. Broderick, A. Loeb. (2009). Imaging the black hole silhouette of M87: implications for jet formation and black hole spin. Astrophysical Journal.697(2):1164-1179. DOI: 10.1103/PhysRev.164.1776.
  • [75]R. Takahashi. (2004). Shapes and positions of black hole shadows in accretion disks and spin parameters of black holes. Astrophysical Journal.611(2):996-1004. DOI: 10.1103/PhysRev.164.1776.
  • [76]J. D. Schnittman, J. H. Krolik. (2009). X-ray polarization from accreting black holes: the thermal state. Astrophysical Journal.701(2):1175-1187. DOI: 10.1103/PhysRev.164.1776.
  • [77]J. D. Schnittman, J. H. Krolik. (2010). X-ray polarization from accreting black holes: coronal emission. Astrophysical Journal.712(2):908-924. DOI: 10.1103/PhysRev.164.1776.
  • [78]K. Beckwith, C. Done. (2005). Extreme gravitational lensing near rotating black holes. Monthly Notices of the Royal Astronomical Society.359(4):1217-1228. DOI: 10.1103/PhysRev.164.1776.
  • [79]C. M. Will. (1993). Theory and Experiment in Gravitational Physics. DOI: 10.1103/PhysRev.164.1776.
  • [80]L. Sadeghian, C. M. Will. Testing the black hole no-hair theorem at the galactic center: perturbing effects of stars in the surrounding cluster. . DOI: 10.1103/PhysRev.164.1776.
  • [81]H. Bartko, G. Perrin, W. Brandner, C. Straubmeier. et al.(2009). GRAVITY: astrometry on the galactic center and beyond. New Astronomy Reviews.53(11-12):301-306. DOI: 10.1103/PhysRev.164.1776.
  • [82]J.-P. MacQuart, N. Kanekar, D. A. Frail, S. M. Ransom. et al.(2010). A high-frequency search for pulsars within the central parsec of Sgr A*. Astrophysical Journal.715(2):939-946. DOI: 10.1103/PhysRev.164.1776.
  文献评价指标  
  下载次数:92次 浏览次数:3次