期刊论文详细信息
Journal of Space Weather and Space Climate
Power grid disturbances and polar cap index during geomagnetic storms
Peter Stauning1 
[1] Danish Meteorological Institute,Lyngbyvej 100,DK-2100Copenhagen,Denmark
关键词: polar Ionosphere;    substorms;    magnetic fields;    technological systems;    geomagnetically induced currents (GIC);   
Others  :  800666
DOI  :  doi:10.1051/swsc/2013044
 received in 2013-03-13, accepted in 2013-05-22,  发布年份 2013
PDF
【 摘 要 】

The strong geomagnetic storm in the evening of 30 October 2003 caused high-voltage power grid disturbances in Sweden that expanded to produce hour-long power line outage in Malmö located in the southern part of the country. This was not a unique situation. The geomagnetic storm on 13 March 1989 caused extensive disruptions of high-voltage power circuits especially in the Province of Quebec, Canada, but also to a lesser degree in Scandinavia. Similar events have occurred earlier, among others, during the great storms of 13–14 July 1982 and 8–9 February 1986. These high-voltage power grid disturbances were related to impulsive magnetic variations accompanying extraordinarily intense substorm events. The events were preceded by lengthy intervals of unusually high values of the Polar Cap (PC) index caused by enhanced transpolar ionospheric convection. The transpolar convection transports magnetic flux from the dayside to nightside which causes equatorward displacements of the region of auroral activity enabling the substorms to hit vital power grids. During the 30 October 2003 event the intense solar proton radiation disabled the ACE satellite observations widely used to provide forecast of magnetic storm events. Hence in this case the alarmingly high PC index could provide useful warning of the storm as a back-up of the missing ACE-based forecast. In further cases, monitoring the PC index level could provide supplementary storm warnings to the benefit of power grid operators.

【 授权许可】

   
© P. Stauning, Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707201516833.pdf 4510KB PDF download
Figure 8. 44KB Image download
Figure 7. 56KB Image download
Figure 4@(e) 220KB Image download
Figure 5. 62KB Image download
Figure 4. 61KB Image download
Figure 3. 58KB Image download
Figure 2. 124KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 4@(e)

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Boteler, D.H., R.J. Pirjola, and H. Nevanlinna, The effects of geomagnetic disturbances on electrical systems at the Earth’s surface, Adv. Space Res., 22 (1), 17–27, 1998.
  • [2]Janzhura, A., O. Troshichev, and P. Stauning, Unified PC indices: Relation to isolated magnetic substorms, J. Geophys. Res., 112, A09207, DOI: 10.1029/2006JA012132, 2007.
  • [3]Kan, J.R., and L.C. Lee, Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6 (7), 577–580, 1979. [NASA ADS]
  • [4]Kappenman, J., Geomagnetic Storms and their Impacts on the U.S. Power Grid, Metatech Report, Meta-R-319, 197 pp, 2010 (http://www.ornl.gov./sci/ees/etsd/pes/pubs/ferc_Meta-R-319.pdf).
  • [5]Pirjola, R., Modelling the electric and magnetic fields at the Earth’s surface due to an auroral electrojet, J. Atmos. Sol. Terr. Phys., 60, 1139–1148, 1998.
  • [6]Pirjola, R. and A. Viljanen, Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length, Ann. Geophys., 16, 1434–1444, 1998
  • [7]Pulkkinen, A., S. Lindahl, A. Viljanen, and R. Pirjola, Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather, 3, S08C03, DOI: 10.1029/2004SW000123, 2005.
  • [8]Stauning, P., Modelling electrojet currents causing power line disturbances during large geomagnetic storms, in: R. Gendrin et al. (eds.) ESTEC Proceedings from Space Weather Workshop 17–19 December 2001: Looking towards a European Space Weather Program, 223–226, 2001.
  • [9]Stauning, P., Comment on “The PC index: review of methods” by McCreadie and Menvielle (2010), Ann. Geophys., 29, 1137–1146, 2011.
  • [10]Stauning, P., The polar cap PC indices. Relations to solar wind and global disturbances, in: M. Lazar (ed.), Exploring the Solar Wind, Intech Publ. Co., ISBN: 978-953-51-339-4, DOI: 10.5772/37359, 2012.
  • [11]Stauning, P., and J. Watermann, High-voltage power-line disturbances and electrojet modelling during large geomagnetic storms, in: H. Sawaya-Lacoste (ed.), Proceedings from SUNSPA Conference 2001, ESA SP477, 521–524, 2002.
  • [12]Stauning, P., O. Troshichev, and A. Janzhura, The polar cap (PC) index. Relations to solar wind parameters and global magnetic activity level, J. Atmos. Sol. Terr. Phys., 70, 2246–2261, DOI: 10.1016/j.jastp.2008.09.028, 2008.
  • [13]Thomson, A.W.P., E.B. Dawson, and S.J. Reay, Quantifying extreme behaviour in geomagnetic activity, Space Weather, 9, S10001, DOI: 10.1029/2011SW000696, 2011.
  • [14]Troshichev, O.A., and V.G. Andrezen, The relationship between interplanetary quantities and magnetic activity in the southern polar cap, Planet. Space Sci., 33, 415–419, 1985.
  • [15]Troshichev, O.A., V.G. Andrezen, S. Vennerstrom, and E. Friis-Christensen, Magnetic activity in the polar cap – A new index, Planet. Space Sci., 36, 1095–1102, 1988.
  • [16]Troshichev, O.A., N.P. Dmitrieva, and B.M. Kuznetsov, Polar cap magnetic activity as a signature of substorm development, Planet. Space Sci., 27, 217–221, 1979.
  • [17]Troshichev, O., A. Janzhura, and P. Stauning, Unified PCN and PCS indices: method of calculation, physical sense, and dependence on the IMF azimuthal and northward components, J. Geophys. Res., 111, A05208, 10 pp, DOI: 10.1029/2005JA011402, 2006.
  • [18]Vennerstrøm, S., The geomagnetic activity index PC, PhD Thesis, Scientific Report 91-3, Danish Meteorological Institute, 105 pp, 1991.
  • [19]Viljanen, A., and R. Pirjola, Statistics on geo-magnetically-induced currents in the finnish 400 kV power system based on recordings of geomagnetic variations, J. Geomag. Geoelectr., 41, 411–420, 1989.
  • [20]Viljanen, A., O. Amm, and R. Pirjola, Modelling geomagnetically induced currents during different ionospheric situations, J. Geophys. Res., 104, 28059–28071, 1999.
  • [21]Viljanen, A., H. Nevanlinna, K. Pajunpää, and A. Pulkkinen, Time derivative of the horizontal geomagnetic field as an activity indicator, Ann. Geophys., 19, 1107–1118, 2001.
  • [22]Wik, M., A. Viljanen, R. Pirjola, A. Pulkkinen, P. Wintoft, and H. Lundstedt, Calculation of Geomagnetically Induced Currents in the 400 kV Power System in Southern Sweden, Space Weather, 6, S07005, DOI: 10.1029/2007SW000343, 2008.
  • [23]Wik, M., R. Pirjola, H. Lundstedt, A. Viljanen, P. Wintoft, and A.A. Pulkkinen, Space weather effects in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems, Ann. Geophys., 27, 1775–1787, 2009.
  文献评价指标  
  下载次数:81次 浏览次数:22次