期刊论文详细信息
Journal of Space Weather and Space Climate
Tackling ionospheric scintillation threat to GNSS in Latin America
Elcia Ferreira Da Silva6  Andrea Cantó5  Jean-Marie Sleewaegen3  Andrzej W. Wernik2  Joao Francisco Galera Monico8  Bruno Bougard3  Vincenzo Romano7  Luca Spogli7  Lucilla Alfonsi7  Giorgiana De Franceschi7  Craig Hancock1  Zeynep Elmas1  Biagio Forte4  Marcio Aquino1  Vadakke Veettil Sreeja1 
[1] Institute of Engineering Surveying and Space Geodesy, University of Nottingham,Nottingham,NG7 2RD,UK;Space Research Center, Polish Academy of Sciences, ul. Bartycka18a,00-716 Warsaw,Poland;Septentrio N. V., Greenhill Campus,Interleuvenlaan 15G,3001 Leuven,Belgium;Centre for Atmospheric Research, University of Nova Gorica,Vipavska 13,SI 5000 Nova Gorica,Slovenia;Pildo Consulting, SL, Parc Tecnològic de Barcelona Nord Office A216-A220,Marie Curie 8-14,08042 Barcelona,Spain;Consultgel Consultoria em Geomatica Ltda, Rua Jose Tognoli, 238, Presidente Prudente, SP 19060-370,Brazil;Istituto Nazionale di Geofisica e Vulcanologia,Vigna Murata 605,00143 Rome,Italy;Faculdade de Ciências e Tecnologia, Departamento de Cartografia, Universidade Estadual Paulista Julio de Mesquita Filho, Rua Roberto Simonsen, 305, Presidente Prudente, SP,Brazil
关键词: ionospheric irregularities;    equatorial ionosphere;    ionosphere;    modelling and forecasting;   
Others  :  800722
DOI  :  doi:10.1051/swsc/2011005
 received in 2011-02-10, accepted in 2011-10-24,  发布年份 2011
PDF
【 摘 要 】

Scintillations are rapid fluctuations in the phase and amplitude of transionospheric radio signals which are caused by small-scale plasma density irregularities in the ionosphere. In the case of the Global Navigation Satellite System (GNSS) receivers, scintillation can cause cycle slips, degrade the positioning accuracy and, when severe enough, can even lead to a complete loss of signal lock. Thus, the required levels of availability, accuracy, integrity and reliability for the GNSS applications may not be met during scintillation occurrence; this poses a major threat to a large number of modern-day GNSS-based applications. The whole of Latin America, Brazil in particular, is located in one of the regions most affected by scintillations. These effects will be exacerbated during solar maxima, the next predicted for 2013. This paper presents initial results from a research work aimed to tackle ionospheric scintillation effects for GNSS users in Latin America. This research is a part of the CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project, co-funded by the EC Seventh Framework Program and supervised by the GNSS Supervisory Authority (GSA), which aims to develop and test ionospheric scintillation countermeasures to be implemented in multi-frequency, multi-constellation GNSS receivers.

【 授权许可】

   
© Owned by the authors, Published by EDP Sciences 2011

【 预 览 】
附件列表
Files Size Format View
20140707204215236.pdf 1620KB PDF download
Fig. 6b. 103KB Image download
Fig. 6a. 61KB Image download
Fig. 5. 75KB Image download
Fig. 4. 103KB Image download
Fig. 3. 49KB Image download
Fig. 2. 54KB Image download
Fig. 1. 107KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6a.

Fig. 6b.

【 参考文献 】
  • [1]Aarons, J., Global morphology of ionospheric scintillations, Proc. IEEE, 70, 360–378, 1982.
  • [2]Aarons, J., Construction of a model of equatorial scintillation intensity, Radio Sci., 463 (20), 397–402, 1985.
  • [3]Abdu, M.A., I.S. Batista, A.J. Carrasco, and C.G.M. Brum, South Atlantic Magnetic anomaly ionization: A review and a new focus on electrodynamics effects in the equatorial ionosphere, J. Atm. Solar-Terr. Phys., 67, 1643–1657, DOI: 10.1016/j.jastp.2005.01.014, 2005.
  • [4]Abdu, M.A., J.A. Bittencourt, and I.S. Batista, Magnetic declination of the 466 equatorial F region dynamo electric field development and spread F, J. Geophys. Res., 86 (467), 11443–11446, 1981.
  • [5]Alfonsi, L., L. Spogli, G. De Franceschi, V. Romano, M. Aquino, A. Dodson, and C.N. Mitchell, Bipolar climatology of GPS ionospheric scintillation at solar minimum, Radio Sci., 46, RS0D05, DOI: 10.1029/2010RS004571, 2011.
  • [6]Aquino, M., Z. Elmas, B. Forte, G. De Franceschi, L. Alfonsi, A. Wernik, and A. Canton, State of the art review, CIGALA D2.1-WP200/V1.0 Final Version, http://www.galileoic.org/la/?q=node/322, 2010.
  • [7]Aquino, M., J.F.G. Monico, A. Dodson, H. Marques, G. De Franceschi, L. Alfonsi, V. Romano, and M. Andreotti, Improving the GNSS positioning stochastic model in the presence of ionospheric scintillation, J. Geodesy., 83 (10), 953–966, DOI: 10.1007/s00190-009-0313-6, 2009.
  • [8]Basu, Su., Sa. Basu, and B.K. Khan, Model of equatorial scintillation from in-situ measurements, Radio Sci., 11, 821–832, 1976.
  • [9]Basu, S., E. Kudeki, Su. Basu, C.E. Valladares, E.J. Weber, et al., Scintillations, plasma drifts and neutral winds in the equatorial ionosphere after sunset, J. Geophys. Res., 101, 795–26809, 1996.
  • [10]Beach, T.L., and P.M. Kintner, Development and use of a GPS ionospheric scintillation monitor, IEEE Trans. Geosci. Remote Sens. (USA), 39, 918–928, 2001.
  • [11]Béniguel, Y., and S. Buonomo, A multiple phase screen propagation model to estimate fluctuations of transmitted signals, Phys. Chem. Earth (C), 24, 333–338, 1999.
  • [12]Cervera, M.A., and M. Knight, Time series modeling of intensity and phase 512 scintillation at GPS frequencies, Acta Geod. Geophys. Hung., 33 (1), 25–40, 513–514, 1998.
  • [13]Conker, R.S., M.B. El Arini, C.J. Hegarty, and T. Hsiao, Modeling the effects of ionospheric scintillation on GPS/SBAS availability, Radio Sci., 38 (1), DOI: 10.1029/2000RS002604, 2003.
  • [14]de Paula, E.R., E.A. Kherani, M.A. Abdu, I.S. Batista, J.H.A. Sobral, et al., Characteristics of the ionospheric irregularities over Brazilian longitudinal sector, IJRSP, 36, 268–277, 2007.
  • [15]Fremouw, E.J., and C.L. Rino, An empirical model for average F-layer scintillation at VHF/UGF, Radio Sci., 8, 213–222, 1973.
  • [16]Groves, K.M., S. Basu, E.J. Weber, M. Smitham, H. Kuenzler, et al, Equatorial scintillation and systems support, Radio Sci., 32, 2047–2064, 1997.
  • [17]Groves, K.M., S. Basu, J.M. Quinn, T.R. Pedersen, K. Falinski, A. Brown, R. Silva, and P. Ning, A comparison of GPS performance in a scintillating environment at Ascension Island, Proceedings of ION GPS 2000, Institute of Navigation, Salt Lake City, UT, 2000.
  • [18]Humphreys, T.E., M.L. Psiaki, B.M. Ledvina, and P.M. Kintner, GPS carrier tracking loop performance in the presence of ISs, Proc. ION GNSS 2005, Institute of Navigation, Long Beach, CA, 2005.
  • [19]Humphreys, T.E., M.L. Psiaki, J.C. Hinks, B. O’Hanlon, and P.M. Kintner Jr., Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops, IEEE J. Select. Topics Signal Process., 3, 707–715, 2009.
  • [20]Iyer, K.N., J.R. Souza, B.M. Pathan, M.A. Abdu, M.N. Jivani, and H.P. Joshi, A model of equatorial and low latitude VHF scintillation in India, Indian J. Radio & Space Phys., 35, 98–104, 2006.
  • [21]Kelley, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Academic Press, San Diego, CA, 1989.
  • [22]Kintner, P.M., H. Kil, T.L. Beach, and E.R. de Paula, Fading Timescales Associated with GPS Signals and Potential Consequences, Radio Sci., 36 (4), 731–743, 2001.
  • [23]Knight, M., and A. Finn, The effects of ionospheric scintillation on GPS, Proc. ION GPS 1998, Nashvill, TN: ION, 1998.
  • [24]Mendillo, M., J. Baumgardner, Pi. Xiaoquing, P.J. Sultan, and R.T. Tsunoda, Onset conditions for equatorial spread F, J. Geophys. Res., 97 (13), 865–876, 1992.
  • [25]Morrissey, T.N., K.W. Shallberg, A.J. Van Dierendonck, and M.J. Nicholson, GPS receiver performance characterization under realistic ionospheric phase scintillation environments, Radio Sci., 39, 1–18, 2004.
  • [26]Muella, M.T.A.H., E.A. Kherani, E.R. de Paula, A.P. Cerruti, P.M. Kintner, I.J. Kantor, C.N. Mitchell, I.S. Batista, and M.A. Abdu, Scintillation-producing Fresnel-scale irregularities associated with the regions of steepest TEC gradients adjacent to the equatorial ionization anomaly, J. Geophys. Res., 115, A03301, DOI: 10.1029/2009JA014788, 2010.
  • [27]Rama Rao, P.V.S., S. Gopikrishna, K. Niranjan, and D.S.V.V.D. Prasad, Study of spatial and temporal characteristics of L-band scintillations over the Indian low latitude region and their possible effects on GPS navigation, Ann. Geophys., 24, 1567–1580, 2006.
  • [28]Secan, J.A., R.M. Bussey, E.J. Fremouw, and Sa. Basu, An improved model of equatorial scintillation, Radio Sci., 30, 607–617, 1995.
  • [29]Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M.H.O. Aquino, and A. Dodson, Climatology of GPS ionospheric scintillations over high and mid-latitude European regions, Ann. Geophys., 27, 3429–3437, 2009.
  • [30]Spogli, L., L. Alfonsi, G. De Franceschi, V. Romano, M.H.O. Aquino, and A. Dodson, Climatology of GNSS ionospheric scintillations at high and mid latitudes under different solar activity conditions, Il Nuovo Cimento B, DOI: 10.1393/ncb/i2010-10857-7, 2010.
  • [31]Taylor, J.R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurement, 2nd edition, Univ. Sci., Sausalito, CA, 1997.
  • [32]Wernik, A.W., L. Alfonsi, and M. Materassi, Scintillation modeling using in situ data, Radio Sci., 42, RS1002, DOI: 10.1029/2006RS003512, 2007.
  • [33]Wernik, A.W., and C.H. Liu, Ionospheric irregularities causing scintillations of GHz frequency radio signals, J. Atm. Terr. Phys., 36, 871–879, 1974.
  文献评价指标  
  下载次数:39次 浏览次数:17次