期刊论文详细信息
Journal of Space Weather and Space Climate
Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere
Peter Tonev4  Alexander Mishev1  Lachezar Mateev4  Jan Lastovicka3  Karel Kudela2  Simeon Asenovski4  Peter I.Y. Velinov4 
[1] Sodankyla Geophysical Observatory, University of Oulu unit,Finland;Institute of Experimental Physics, SAS,Watsonova 47,04001 Košice,Slovakia;Institute of Atmospheric Physics, ASCR,Bocni II,14131 Prague,Czech Republic;Institute for Space Research & Technology, Academy of Sciences,1113 Sofia,Bulgaria
关键词: solar-terrestrial relationships;    solar activity;    atmosphere;    ionosphere;    ionization;    solar energetic particles;    cosmic rays;   
Others  :  800647
DOI  :  doi:10.1051/swsc/2013036
 received in 2012-06-05, accepted in 2013-03-04,  发布年份 2013
PDF
【 摘 要 】

A brief review of the study during COST Action ES0803 of effects due to cosmic rays (CR) and solar energetic particles (SEP) in the ionosphere and atmosphere is presented. Models CORIMIA (COsmic Ray Ionization Model for Ionosphere and Atmosphere) and application of CORSIKA (COsmic Ray SImulations for KAscade) code are considered. They are capable to compute the cosmic ray ionization profiles at a given location, time, solar and geomagnetic activity. Intercomparison of the models, as well as comparison with direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and for the different levels of the solar activity. The effects of CR and SEP can be very strong locally in the polar cap regions, affecting the physical-chemical and electrical properties of the ionosphere and atmosphere. Contributions here were also made by the anomalous CR, whose ionization is significant at high geomagnetic latitudes (above 65°–70°). Several recent achievements and application of CR ionization models are briefly presented. This work is the output from the SG 1.1 of the COST ES0803 action (2008–2012) and the emphasis is given on the progress achieved by European scientists involved in this collaboration.

【 授权许可】

   
© P. Velinov et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707200752560.pdf 3095KB PDF download
Fig. 14. 75KB Image download
Fig. 13. 68KB Image download
Fig. 12. 40KB Image download
Fig. 11. 33KB Image download
Fig. 10. 38KB Image download
Fig. 9. 64KB Image download
Fig. 8. 80KB Image download
Fig. 7. 83KB Image download
Fig. 6. 82KB Image download
Fig. 5. 97KB Image download
Fig. 4. 94KB Image download
Fig. 3. 87KB Image download
Fig. 2. 96KB Image download
Fig.1. 67KB Image download
【 图 表 】

Fig.1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

【 参考文献 】
  • [1]Agee, E.M., K. Kiefer, and E. Cornett, Relationship of lower troposphere cloud cover and cosmic rays: an updated perspective, J. Clim., 25 (3), 1057–1060, 2012.
  • [2]Agostinelli, S., J. Allison, K. Amako, H. Araujo, et al., GEANT 4 – a simulation toolkit, Nucl. Instrum. Methods Phys. Res., A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3), 250–303, 2003. [NASA ADS]
  • [3]Alcaraz, J., B. Alpat, G. Ambrosi, H. Anderhub, L. Ao, et al., Cosmic protons AMS collaboration, Phys. Lett., B 490, 27, 2000a. [NASA ADS]
  • [4]Alcaraz, J., B. Alpat, G. Ambrosi, H. Anderhubag, L. Ao, et al., Helium in near Earth orbit AMS collaboration, Phys. Lett., B 494, 193, 2000b. [NASA ADS]
  • [5]Battistoni, G., S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, et al., M., Albrow, and R. Raja, The FLUKA code: description and benchmarking. in Proc. of the Hadronic Shower Simulation Workshop 2006, Fermilab 6–8 September 2006, 896: AIP Conference Proc, 31–49, 2007.
  • [6]Bazilevskaya, G.A., I.G. Usoskin, E.O. Fluckiger, R.G. Harrison, L. Desorgher, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev., 137, 149–173, 2008.
  • [7]Berezinsky, V.S., S.V. Balanov, V.L. Ginzburg, V.A. Dogel, and V.S. Ptuskin, Astrophysics of the Cosmic Rays, Nauka Publishing House, Moscow, 1984.
  • [8]Bering III, E.A., A.A. Few, and J.R. Benbrook, The global electric circuit, Phys. Today, 51 (10), 24, 1998.
  • [9]Boezio, M., P. Carlson, T. Francke, N. Weber, M. Suffert, et al., The cosmic ray proton and helium spectra between 0.4 and 200 GV, Astrophys. J., 518, 457, 1999. [NASA ADS]
  • [10]Brasseur, G., and S. Solomon, Aeronomy of the Middle Atmosphere, Springer, Dordrecht, 2005.
  • [11]Buchvarova, M., and P.I.Y. Velinov, Modeling spectra of cosmic rays influencing on the ionospheres of earth and outer planets during solar maximum and minimum, J. Adv. Space Res., 36 (11), 2127–2133, 2005.
  • [12]Buchvarova, M., and P.I.Y. Velinov, Empirical model of cosmic ray spectrum in energy interval 1 MeV–100 GeV during 11-year solar cycle, J. Adv. Space Res., 45 (8, 1), 1026–1034, 2010.
  • [13]Buchvarova, M., P.I.Y. Velinov, and I. Buchvarov, Model approximation of cosmic ray spectrum, Planet. Space Sci., 59 (4), 355–363, 2011.
  • [14]Burger, R.A., M.S. Potgieter, and B. Heber, Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: implications for the diffusion tensor, J. Geophys. Res., 105, 27447, 2000. [NASA ADS]
  • [15]Butikofer, R., E.O. Fluckiger, L. Desorgher and M.R. Moser, The extreme solar cosmic ray particle event on 20 January 2005 and its influence on the radiation dose rate at aircraft altitude, Sci. Total Environ., 391 (2–3), 177–183, 2008.
  • [16]Calisto, M., I. Usoskin, E. Rozanov, and T. Peter, Influence of galactic cosmic rays on atmospheric composition and dynamics, Atmos. Chem. Phys., 11, 4547–4556, 2011.
  • [17]Cummings, A.C., E.C. Stone, and W.R. Webber, Evidence that the anomalous cosmic-ray component is singly ionized, Astrophys. J., 287, 99–103, 1984.
  • [18]Desorgher, L., E. Fluckiger, M. Gurtner, M.R. Moser, R. Bütikofer, et al., Atmocosmics: a GEANT4 code for computing the interaction of cosmic rays with the Earths atmosphere, Int. J. Mod. Phys., A 20 (29), 6802–6804, 2005.
  • [19]Dorman, L.I., Cosmic Rays in the Earth’s Atmosphere and Underground, Kluwer Academic Publishers, Dordrecht, 2004.
  • [20]Dorman, L.I., and I.D. Kozin, Cosmic Radiation in the Upper Atmosphere, Fizmatgiz, Moscow, 1983.
  • [21]Dorman, L.I., and T.M. Krupitskaya, Calculation of expected ratio of solar cosmic ray ion generation speeds on different altitudes, in Cosmic Rays, Nauka, Moscow, 15, 30–33, 1975.
  • [22]Egorova, T., E. Rozanov, V. Zubov, E. Manzini, W. Schmutz, and T. Peter, Chemistry-climate model SOCOL: a validation of the present-day climatology, Atmos. Chem. Phys., 5, 1557–1576, DOI: 10.5194/acp-8-6365-2005, 2005.
  • [23]Ferrari, A., and P. Sala, ATLAS Int. Note PHYS-No-086, CERN, Geneva, 1996.
  • [24]Fesefeldt, H.C., GHEISHA program, Technical Report PITHA 85-02, III Physikalisches Institut, RWTH Aachen Physikzentrum, 5100 Aachen, Germany, September, 1985.
  • [25]Ginzburg, V.L., and S.I. Syrovatskii, The Origin of the Cosmic Rays, Pergamon Press, Oxford, 1964.
  • [26]Harrison, R.G., The global atmospheric electrical circuit and climate, Sur. Geophys., 25 (5–6), 441–484, 2004.
  • [27]Heck, D., J. Knapp, J.N. Capdevielle, G. Schatz and T. Thouw, CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers, Forschungszentrum Karlsruhe Report FZKA 6019, 1998.
  • [28]Hillas, A.M., Cosmic Rays, Pergamon Press, Oxford, 1972.
  • [29]Keilhauer, B., J. Blumer, R. Engel, H.O. Klages and M. Risse, Impact of varying atmospheric profiles on extensive air shower observation: atmospheric density and primary mass reconstruction, Astropart. Phys., 22 (3–4), 249–261, 2004.
  • [30]Keilhauer, B., J. Blumer, R. Engel and H.O. Klages, Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction, Astropart. Phys., 25 (4), 259–268, 2006.
  • [31]Kilifarska, N.A., Climate sensitivity to the lower stratospheric ozone variations, J. Atmos. Sol. Terr. Phys., 90/91, 9–14, 2012a.
  • [32]Kilifarska, N.A., Ozone as a mediator of galactic cosmic ray influence on climate, Sun Geosphys., 7 (2), 97–102, 2012b.
  • [33]Kilifarska, N.A., An autocatalytic cycle for ozone production in the lower stratosphere initiated by Galactic Cosmic rays, C.R. Acad. Bulg. Sci., 66 (2), 243–252, 2013.
  • [34]Krivolutsky, A., A. Kuminov, and T. Vyushkova, Ionization of the atmosphere caused by solar protons and its influence on ozonosphere of the Earth during 1994–2003, J. Atmos. Sol. Terr. Phys., 67, 105–117, 2005.
  • [35]Kudela, K., On energetic particles in space, Acta Phys. Slovaca, 59, 537–652, 2009.
  • [36]Kudela, K., M. Storini, M.Y. Hofer, and A. Belov, Cosmic rays in relation to space weather, Space Sci. Rev., 93 (1–2), 153–174, 2000.
  • [37]Kudela, K., H. Mavromichalaki, A. Papaioannou, and M. Gerontidou, On mid-term periodicities in cosmic rays, Sol. Phys., 266, 173–180, 2010.
  • [38]Laštovička, J., and P. Križan, Geomagnetic storms, Forbush decreases of cosmic rays and total ozone at northern higher middle latitudes, J. Atmos. Sol. Terr. Phys., 67, 119–124, 2005.
  • [39]Laštovička, J., and P. Križan, Impact of strong geomagnetic storms on total ozone at southern higher middle latitudes, Stud. Geophys. Geod., 53, 151–156, 2009.
  • [40]Leske, R.A., A.C. Cummings, R.A. Mewaldt, and E.C. Stone, Anomalous and galactic cosmic rays at 1 AU during the cycle 23/24 solar minimum, Space Sci. Rev., DOI: 10.1007/s11214-011-9772-1, 2011.
  • [41]Markson, R., and M. Muir, Solar wind control of the Earth’s electric field, Science, 208, 979–990, 1980.
  • [42]McDonald, F.B., B. Klecker, R.E. McGuire, and D.V. Reames, Relative recovery of galactic and anomalous cosmic rays at 1 AU: further evidence for modulation in the heliosheath, J. Geophys. Res., 107 (A8), DOI: 10.1029/2001JA000206, 2002.
  • [43]Menn, W., M. Hof, O. Reimer, M. Simon, A.J. Davis, et al., The absolute flux of protons and helium at the top of the atmosphere using IMAX, Astrophys J., 533, 281, 2000. [NASA ADS]
  • [44]Mertens, C.J., B.T. Kress, M. Wiltberger, W.K. Tobiska, B. Grajewski, X. Xu, in Atmospheric Ionizing Radiation from Galactic and Solar Cosmic Rays, Current Topics in Ionizing Radiation Research, edited by M. Dr. Nenoi, InTech, Available from: http: //www.intechopen.com/books/current-topics-in-ionizing-radiation-research/atmospheric-ionizing-radiationfrom-galactic-and-solar-cosmic-rays, 2012.
  • [45]Miroshnichenko, L.I., Solar Cosmic Rays, ASSL, 260, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
  • [46]Miroshnichenko, L.I., Solar cosmic rays in the system of solar-terrestrial relations, J. Atmos. Sol. Terr. Phys., 70, 450–466, 2008.
  • [47]Mishev, A., A study of atmospheric processes based on neutron monitor data and Cherenkov counter measurements at high mountain altitude, J. Atmos. Sol. Terr. Phys., 72 (16), 1195–1199, 2010.
  • [48]Mishev, A., and P.I.Y. Velinov, Atmosphere ionization due to cosmic ray protons estimated with CORSIKA code simulations, C.R. Acad. Bulg. Sci., 60 (3), 225–230, 2007.
  • [49]Mishev, A., and P.I.Y. Velinov, Effects of atmospheric profile variations on yield ionization function Y in the atmosphere, C.R. Acad. Bulg. Sci., 61 (5), 639–644, 2008.
  • [50]Mishev, A., and P.I.Y. Velinov, Normalized atmospheric ionization yield functions Y for different cosmic ray nuclei obtained with recent CORSIKA code simulations, C.R. Acad. Bulg. Sci., 62 (5), 631–640, 2009.
  • [51]Mishev, A., and P.I.Y. Velinov, The effect of model assumptions on computations of cosmic ray induced ionization in the atmosphere, J. Atmos. Sol. Terr. Phys., 72, 476–481, 2010.
  • [52]Mishev, A., and P.I.Y. Velinov, Renormalized ionization yield function Y for different nuclei obtained with full Monte Carlo simulations, C.R. Acad. Bulg. Sci., 64 (7), 997–1006, 2011a.
  • [53]Mishev, A., and P.I.Y. Velinov, Normalized ionization yield function for various nuclei obtained with full Monte Carlo simulations, J. Adv. Space Res., 48, 19–24, 2011b.
  • [54]Mishev, A., and P.I.Y. Velinov, Contribution of cosmic ray nuclei of solar and galactic origin to atmospheric ionization during SEP event on 20 January 2005, C.R. Acad. Bulg. Sci., 65 (3), 373–380, 2012.
  • [55]Mishev, A., P.I.Y. Velinov, and L. Mateev, Atmospheric ionization due to solar cosmic rays from 20 January 2005 calculated with Monte Carlo simulations, C.R. Acad. Bulg. Sci., 63 (11), 1635–1642, 2010.
  • [56]Mishev, A., P.I.Y. Velinov, L. Mateev, and Y. Tassev, Ionization effect of solar protons in the Earth atmosphere – case study of the 20 January 2005 SEP event, J. Adv. Space Res., 48, 1232–1237, 2011.
  • [57]Mishev, A., P.I.Y. Velinov, L. Mateev, and Y. Tassev, Ionization effect of nuclei with solar and galactic origin in the earth atmosphere during GLE 69 on 20 January 2005, J. Atmos. Sol. Terr. Phys., 89, 1–7, 2012.
  • [58]Nestorov, G., Physics of the Lower Ionosphere, Publ. House of the Bulg. Acad. Sci, Sofia, 1969.
  • [59]O’Brien, K., Cosmic-ray propagation in the atmosphere, Il Nuovo Cimento A, 3 (4), 521–547, 1971.
  • [60]Olson, D.E., Interpretation of the solar influence on the atmospheric electrical parameters, in Weather and Climate Responses to Solar Variations, edited by B.M., McCormac, Assoc. Univ. Press, Boulder, CO, 483–488, 1983.
  • [61]Porter, H.S., C.H. Jackman, and A.E.S. Green, Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys., 65, 154–167, 1976.
  • [62]Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C++ – the Art of Scientific Computing, Cambridge University Press, Cambridge, 1991.
  • [63]Reid, G.S., A study of enhanced ionisation produced by solar protons during a polar cap absorption event, J. Geophys. Res., 66, 4071, 1961.
  • [64]Rycroft, M.J., S. Israelson, and C. Price, The global atmospheric electrical circuit, solar activity, and climate change, J. Atmos. Sol. Terr. Phys., 62 (17–18), 1563–1576, 2000.
  • [65]Rycroft, M.J., A. Odzimek, N.F. Arnold, M. Fullekrug, A. Kulak, and T. Neubert, New model simulations of the global atmospheric electrical circuit driven by thunderstorms and electrified shower clouds: the roles of lightning and sprites, J. Atmos. Sol. Terr. Phys., 69, 2485–2509, 2007.
  • [66]Scherer, K., H. Fichtner, T. Borrmann, J. Beer, L. Desorgher, E. Flükiger, and H.-J. Fahr, Interstellar-terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate, Space Sci. Rev., 127, 327–465, 2007. [NASA ADS]
  • [67]Seo, E.S., J.F. Ormes, R.E. Streitmatter, S.J. Stochaj, W.V. Jones, et al., Measurement of cosmic-ray proton and helium spectra during the 1987 solar minimum, Astrophys. J., 371, 763, 1991.
  • [68]Shikaze, Y., S. Haino, K. Abe, H. Fuke, T. Hams, et al., Measurements of 0.2–20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer, Astropart. Phys., 28, 154, 2007. [NASA ADS]
  • [69]Simpson, J.A., Cosmic radiation: particle astrophysics in the heliosphere, in Frontiers in Cosmic Physics, edited by R.B., Mendell, and A.I. Mincer, Ann. N. York Acad. Sci., 655, 95, 1992.
  • [70]Singh, A.K., D. Siingh, and R.P. Singh, Space weather: physics, effects and predictability, Surv. Geophys., 31, 581–638, 2010.
  • [71]Singh, A.K., D. Singh, and R.P. Singh, Impact of galactic cosmic rays on Earth’s atmosphere and human health, Atmos. Environ., 45, 3806–3818, 2011.
  • [72]R., Sternheimer, in Fundamental Principles and Methods of Particle Detection. Methods of Experimental Physics, vol. V, A. Nuclear Physics, edited by L.C.L., Yuan, and C.S. Wu, New York, London, Academic Press, 1961.
  • [73]Svensmark, H., Influence of cosmic rays on Earth’s climate, Phys. Rev. Lett., 81 (22), 5027–5030, 1998. [NASA ADS]
  • [74]Tinsley, B.A., Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 94 (1–2), 231–258, 2000.
  • [75]Tinsley, B.A., A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation, Adv. Space Res., 50, 791–805, 2012.
  • [76]Tinsley, B.A., and R.A. Heelis, Correlations of atmospheric dynamics with solar activity: evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res., 98, 10375–10384, 1993.
  • [77]Tinsley, B.A., and L. Zhou, Initial results of a global circuit model with stratospheric and tropospheric aerosols, J. Geophys.Res., 111, D16205, 2006.
  • [78]Tonev, P.T., and P.I.Y. Velinov, Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes, C.R. Acad. Bulg. Sci., 64 (12), 1733–1742, 2011.
  • [79]Tsagouri, I., A. Belehaki, N. Bergeot, C. Cid, V. Delouille, et al., Progress in space weather modeling in an operational environment, J. Space Weather Space Clim., 3, in press, 2013.
  • [80]Usoskin, I.G., O.G. Gladysheva, and G.A. Kovaltsov, Cosmic ray induced ionization in the atmosphere: spatial and temporal changes, J. Atmos. Sol. Terr. Phys., 66, 1791–1796, 2004.
  • [81]Usoskin, I., K. Alanko-Huotari, G. Kovaltsov, and K. Mursula, Heliospheric modulation of cosmic rays: Monthly Reconstruction for 1951–2004, J. Geophys. Res., 110 (A12), CiteID: A12108, 2005.
  • [82]Usoskin, I., L. Desorgher, P.I.Y. Velinov, M. Storini, E. Flueckiger, R. Buetikofer, and G.A. Kovalstov, in Solar and Galactic Cosmic Rays in the Earth’s Atmosphere. Developing the Scientific Basis for Monitoring, Modeling and Predicting Space Weather, edited by Lilensten, J., COST 724 Final Report, COST Office, Brussels, 127–135, 2008.
  • [83]Usoskin, I, L. Desorgher, P.I.Y. Velinov, M. Storini, E. Flueckiger, R. Buetikofer, and G.A. Kovalstov, Solar and galactic cosmic rays in the Earth’s atmosphere, Acta Geophys., 57, (1/March), 88–101, 2009. [NASA ADS]
  • [84]Usoskin, I., and G. Kovaltsov, Cosmic ray induced ionization in the atmosphere: full modeling and practical applications, J. Geophys. Res., 111, D21206, 2006.
  • [85]Usoskin, I.G., G.A. Kovaltsov, and I.A. Mironova, Cosmic ray induced ionization model CRAC: CRII: an extension to the upper atmosphere, J. Geophys. Res., 115, D10302, 2010.
  • [86]Usoskin, I.G., G.A. Kovaltsov, I.A. Mironova, A.J. Tylka and W.F. Dietrich, Ionization effect of solar particle GLE events in low and middle atmosphere, Atmos. Chem. Phys., 11, 1979–1988, 2011.
  • [87]Vainio, R., L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger, et al., Dynamics of the Earth’s particle radiation environment, Space Sci. Rev., 147, 187–231, 2009. [NASA ADS]
  • [88]Van Allen, J.A., Physics and Medicine of the Upper Atmosphere, Chapter 14, Albuquerque: Univ. N. Mexico Press, 1952.
  • [89]Velinov, P.I.Y., An expression for ionospheric electron production rate by cosmic rays, C.R. Acad. Bulg. Sci., 19 (2), 109–112, 1966.
  • [90]Velinov, P.I.Y., Some results of the rate of electron production in the cosmic layer of low ionosphere, C.R. Acad. Bulg. Sci., 20 (11), 1141–1144, 1967a.
  • [91]Velinov, P.I.Y., On electron production rates in the polar cap ionosphere due to solar cosmic rays, C.R. Acad. Bulg. Sci., 20 (12), 1278–1278, 1967b.
  • [92]Velinov, P.I.Y., On ionization in the ionospheric D region by galactic and solar cosmic rays, J. Atmos. Terr. Phys., 30, 1891–1905, 1968.
  • [93]Velinov, P.I.Y., Solar cosmic ray ionization in the low ionosphere, J. Atmos. Terr. Phys., 32, 139–147, 1970.
  • [94]Velinov, P.I.Y., Cosmic ray ionization rates in the planetary atmospheres, J. Atmos. Terr. Phys., 36, 359–362, 1974.
  • [95]Velinov, P.I.Y., Effect of the Anomalous Cosmic Ray (ACR) component on the high-latitude ionosphere, C.R. Acad. Bulg. Sci., 44 (2), 33–36, 1991.
  • [96]Velinov, P.I.Y., and L. Mateev, Response of the middle atmosphere on galactic cosmic ray influence, Geomagn. Aeronomy, 30 (4), 593–598, 1990.
  • [97]Velinov, P.I.Y., and L. Mateev, Improved cosmic ray ionization model for the system ionosphere - atmosphere. Calculation of electron production rate profiles, J. Atmos. Sol. Terr. Phys., 70, 574–582, 2008a. [NASA ADS]
  • [98]Velinov, P.I.Y., and L. Mateev, Analytical approach to cosmic ray ionization by nuclei with charge Z in the middle atmosphere – distribution of galactic CR effects, J. Adv. Space Res., 42, 1586–1592, 2008b. [NASA ADS]
  • [99]Velinov, P.I.Y., and A. Mishev, Cosmic ray induced ionization in the atmosphere estimated with CORSIKA code simulations, C.R. Acad. Bulg. Sci., 60 (5), 495–502, 2007.
  • [100]Velinov, P.I.Y., and A. Mishev, Cosmic ray induced ionization in the upper, middle and lower atmosphere simulated with CORSIKA code, in Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, 3–11 July 2007, edited by R., Caballero, et al., Universidad Nacional Autónoma de México, Mexico City, Mexico, 1 (SH), 749–752, 2008a.
  • [101]Velinov, P.I.Y., and A. Mishev, Solar cosmic ray induced ionization in the Earth’s atmosphere obtained with CORSIKA code simulations, C.R. Acad. Bulg. Sci., 61 (7), 927–932, 2008b.
  • [102]Velinov, P.I.Y., and P. Tonev, Electric currents from thunderstorms to the ionosphere during a solar cycle: quasi-static modeling of the coupling mechanism, J. Adv. Space Res., 42, 569–1575, 2008.
  • [103]Velinov, P.I.Y., G. Nestorov, and L. Dorman, Cosmic Ray Influence on the Ionosphere and on the Radio-Wave Propagation, BAS Publ. House, Sofia, 1974.
  • [104]Velinov, P.I.Y., M. Buchvarova, L. Mateev, and H. Ruder, Determination of electron production rates caused by cosmic ray particles in ionospheres of terrestrial planets, J. Adv. Space Res., 27 (11), 1901–1908, 2001.
  • [105]Velinov, P.I.Y., H. Ruder, L. Mateev, M. Buchvarova, and V. Kostov, Method for calculation of ionization profiles caused by cosmic rays in giant planet ionospheres from Jovian group, J. Adv. Space Res., 33, 232–239, 2004.
  • [106]Velinov, P.I.Y., L. Mateev, and N. Kilifarska, 3D model for cosmic ray planetary ionization in the middle atmosphere, Annal. Geophys., 23 (9), 3043–3046, 2005a.
  • [107]Velinov, P.I.Y., H. Ruder, and L. Mateev, Analytical model for cosmic ray ionization by nuclei with charge Z in the lower ionosphere and middle atmosphere, C.R. Acad. Bulg. Sci., 58, 897–902, 2005b.
  • [108]Velinov, P.I.Y., H. Ruder, and L. Mateev, Energy interval coupling in improved cosmic ray ionization model with three intervals in ionization losses function for the system atmosphere/ionosphere, C.R. Acad. Bulg. Sci., 59, 847–854, 2006.
  • [109]Velinov, P.I.Y., L. Mateev, and H. Ruder, Generalized model of ionization profiles due to cosmic ray particles with charge Z in planetary ionospheres and atmospheres with 5 energy interval approximation of the ionization losses function, C.R. Acad. Bulg. Sci., 61 (1), 133–146, 2008.
  • [110]Velinov, P.I.Y., A. Mishev, and L. Mateev, Model for induced ionization by galactic cosmic rays in the Earth atmosphere and ionosphere, J. Adv. Space Res., 44, 1002–1007, 2009.
  • [111]Velinov, P.I.Y., S. Asenovski, and L. Mateev, Simulation of cosmic ray ionization profiles in the middle atmosphere and lower ionosphere on account of characteristic energy intervals, C.R. Acad. Bulg. Sci., 64 (9), 1303–1310, 2011a.
  • [112]Velinov, P.I.Y., A. Mishev, S. Asenovski, and L. Mateev, New operational models for cosmic ray ionization in space physics, Bulg. J. Phys., 38, 264–273, 2011b.
  • [113]Velinov, P.I.Y., S. Asenovski, and L. Mateev, Improved cosmic ray ionization model for ionosphere and atmosphere (CORIMIA) with account of 6 characteristic intervals, C.R. Acad. Bulg. Sci., 65 (8), 1135–1144, 2012.
  • [114]Vitt, F.M., and C.H. Jackman, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model, J. Geophys. Res., 101, 6729–6740, 1996.
  • [115]Weimer, D.R., A flexible, IMF dependent model of high latitude electric potential having “space weather” applications, Geophys. Res. Lett., 23, 2549–2552, 1996.
  • [116]Williams, E.R., The global electrical circuit: a review, Atmos. Res., 91, 140–152, 2009.
  • [117]Wissing, J.M., and M.B. Kallenrode, Atmospheric Ionization Module Osnabruck (AIMOS): a 3D model to determine atmospheric ionization by energetic charged particles from different populations, J. Geophys. Res., 114, A06104, 2009.
  • [118]Wolfram Research Inc., Mathematica, Version 7.0, Champaign, IL, 2008.
  文献评价指标  
  下载次数:113次 浏览次数:17次