| Journal of Space Weather and Space Climate | |
| Retrieval of thermospheric parameters from routinely observed F2-layer Ne(h) profiles at the geomagnetic equator | |
| Ioanna Tsagouri1  Bruno Zolesi2  Loredana Perrone2  Anna Belehaki1  Andrei Mikhailov3  | |
| [1] Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Metaxa and Vas. Pavlou,Palaia Penteli,15236 Greece;Istituto Nazionale di Geofisica e Vulcanologia (INGV),Via di Vigna Murata 605,Rome 00143,Italy;Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region 142190,Russia | |
| 关键词: monitoring; drag; modelling; ionosphere (equatorial); thermosphere; | |
| Others : 800676 DOI : doi:10.1051/swsc/2013038 |
|
PDF
|
|
【 摘 要 】
A principal possibility to retrieve basic thermospheric parameters (neutral temperature Tex, atomic [O] and molecular [O2] oxygen as well as molecular nitrogen [N2] concentrations) from the observed daytime electron density profiles Ne(h) in the equatorial F2-region is demonstrated for the first time. The reduction of a 2D continuity equation for electron concentration in the low-latitude F2-region at the geomagnetic equator (I = 0) results in a simple 1D equation which can be efficiently solved. The method was tested using Jicamarca Incoherent Scatter Radar (ISR) and Digisonde Ne(h) profiles for the periods when CHAMP and GRACE neutral gas density observations are available in the vicinity of the Jicamarca Observatory. The retrieved from ISR Ne(h) neutral gas densities were shown to be close to the observed ones (MRD < 10%) being within the announced absolute uncertainty (10–15%) of the neutral gas density observations and more successful than the predictions of the empirical models JB-2008 (MRD = 32%) and MSISE-00 (MRD = 27%) for the analyzed cases. The implementation of the method with Jicamarca Digisonde Ne(h) profiles has also shown acceptable results especially for solar minimum conditions (MRD ~ 12%) and higher prediction accuracy than modern empirical models provide. This finding seems to open a way for the practical exploitation of the method for thermospheric monitoring purposes.
【 授权许可】
© A. Mikhailov et al., Published by EDP Sciences 2013
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140707202215618.pdf | 1201KB | ||
| Fig. A1. | 48KB | Image | |
| Fig. 7. | 97KB | Image | |
| Fig. 6. | 45KB | Image | |
| Fig. 5. | 23KB | Image | |
| Fig. 4. | 29KB | Image | |
| Fig. 3. | 47KB | Image | |
| Fig. 2. | 25KB | Image | |
| Fig. 1. | 20KB | Image |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. A1.
【 参考文献 】
- [1]Banks, P.M., and G. Kockarts, Aeronomy, Academic Press, New York, London, 1973.
- [2]Balsley, B.B., D.A. Carter, and R.F. Woodman, Vertical ionization drifts in the lower equatorial ionosphere and the meridional current systems, J. Geophys. Res., 81, 1296–1300, 1976.
- [3]Belehaki, A., I. Tsagouri, I. Kutiev, P. Marinov, and S. Fidanova, Upgrades to the topside sounders model assisted by Digisonde (TaD) and its validation at the topside ionosphere, J. Space Weather Space Clim., 2, A20, DOI: http://dx.doi.org/10.1051/swsc/2012020, 2012.
- [4]Bowman, B.R., W.K. Tobiska, F.A. Marcos, C.Y. Huang, C.S. Lin, and W.J. Burke, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices, AIAA/AAS Astrodynamics Specialist Conference, 18–21 August 2008 Honolulu, Hawaii, 19, 2008.
- [5]Bruinsma, S., D. Tamagnan, and R. Biancale, Atmospheric density derived from CHAMP/STAR accelerometer observations, Planet Space Sci., 52, 297–312, 2004.
- [6]Bruinsma, S., J. Forbes, R.S. Nerem, and X. Zhang, Thermospheric density response to the 20–21 November CHAMP and GRACE accelerometer data, J. Geophys. Res., 111, A06303, DOI: 10.1029/2005JA011284, 2006.
- [7]Chuo, Y.-J., C.-C. Lee, W.-S. Chen, and B.W. Reinisch, Comparison between bottomside ionospheric profile parameters retrieved from FORMOSAT3 measurements and ground-based observations collected at Jicamarca, J. Atmos. Sol. Terr. Phys., 73, 1665–1673, 2011.
- [8]Deminov, M.G., V.K. Kozlov, and Yu.S. Sitnov, Ionospheric O+ ions distribution over geomagnetic equator, Res. Sol. Terr. Phys., M.: IZMIRAN, 22–30, (in Russian), 1977.
- [9]Doornbos, E., Thermospheric Density and Wind Determination from Satellite Dynamics, Springer Theses, Springer, Available from http://www.springer.com/978-3-642-25128-3, 2012.
- [10]Fejer, B.G., The equatorial ionospheric electric fields. A review, J. Atmos. Sol. Terr. Phys., 43, 377–385, 1981.
- [11]Fejer, B., and L. Scherliess, Empirical models of storm time equatorial zonal electric fields, J. Geophys. Res., 102 (A11), 24047–24056, 1997.
- [12]Fejer, B.G., J.W. Jensen, and S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res., 113, A05304, DOI: 10.1029/2007JA012801, 2008.
- [13]Hedin, A.E., MSIS-86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987.
- [14]Himmelblau, D.M., Applied Nonlinear Programming, McGraw-Hill Book Company, New York, 1972.
- [15]Huang, X., and B.W. Reinisch, Vertical electron density profiles from the digisonde network, Adv. Space Res., 18, 121–129, 1996.
- [16]Ivanov-Kholodny, G.S., and G.M. Nikoljsky, The Sun and the Ionosphere, Nauka, Moscow, pp. 455 (in Russian), 1969.
- [17]Galkin, I.A., G.M. Khmyrov, A.V. Kozlov, B.W. Reinisch, X. Huang, and V.V. Paznukhov, The ARTIST 5, Radio Sounding Plasma Phys., AIP Proc., 974, 2008.
- [18]Kudeki, E., S. Bhattachayya, and R.F. Woodman, A new approach in incoherent scatter F region ExB drift measurements at Jicamarca, J. Geophys. Res., 104 (A12), 28145–28162, 1999.
- [19]Kutiev, I., P. Marinov, S. Fidanova, A. Belehaki, and I. Tsagouri, Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes, J. Space Weather Space Clim., 2, A21, DOI: http://dx.doi.org/10.1051/swsc/2012021, 2012.
- [20]Leschinskaya, T.Yu., and A.V. Mikhailov, Description of the electron density distribution above the geomagnetic equator in the daytime F2 region of the ionosphere, Geomag. Aeron., 24, 739–744, 1984.
- [21]Lilensten, J., Lj.R. Cander, M.T. Rietveld, P.S. Cannon, and M. Barthelemy, Comparison of EISCAT and ionosonde electron densities: application to a ground-based ionospheric segment of a space weather programme, Ann. Geophys., 23, 183–189, 2005.
- [22]McNamara, L.F., D.L. Cooke, C.E. Valladares, and B.W. Reinisch, Comparison of CHAMP and Digisonde plasma frequencies at Jicamarca, Radio Sci., 42, RS2005, DOI: 10.1029/2006RS003491, 2007.
- [23]Mikhailov, A.V., and J. Lilensten, A revised method to extract thermospheric parameters from incoherent scatter observations, Ann. Geophys., 47 (N2/3), 985–1008, 2004.
- [24]Mikhailov, A.V., A. Belehaki, L. Perrone, B. Zolesi, and I. Tsagouri, Retrieval of thermospheric parameters from routine ionospheric observations: assessment of method’s performance at mid-latitudes daytime hours, J. Space Weather Space Clim., 2, A03, DOI: 10.1051/swsc/2012002, 2012.
- [25]Munninghoff, D.E., Ion and electron temperatures in the topside ionosphere, Aeron. Rep., 86, Aeronom. Lab. Univ. Illinois, Urbana, 1979.
- [26]Nava, B., S.M. Radicella, and F. Azpilicueta, Data ingestion into NeQuick 2, Radio Sci., 46, RS0D17, DOI: 10.1029/2010RS004635, 2011.
- [27]Nsumei, P., B.W. Reinisch, X. Huang, and D. Bilitza, New vary-chap profile of the topside ionosphere electron density distribution for use with the IRI Model and the GIRO real time data, Radio Sci., 47, RS0L16, DOI: 10.1029/2012RS004989, 2012.
- [28]Nusinov, A.A., Solar activity dependence of the intensity of shortwave radiation, Geomag. Aeron. (in Russian), 24, 529–536, 1984.
- [29]Nusinov, A.A., Models for prediction of EUV and X-ray solar radiation based on 10.7-cm radio emission, Proc. Workshop on Solar Electromagnetic Radiation for Solar Cycle 22, Boulder, Co., Ed. R.F., Donnely, NOAA, ERL, Boulder, Co, USA 354–359, 1992.
- [30]Picone, J.M., A.E. Hedin, D.P. Drob, and A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: statistical comparison and scientific issues, J. Geophys. Res., 107, 1468, DOI: 10.1029/2002JA009430, 2002.
- [31]Reinisch, B.W., and X. Huang, Automatic calculation of electron density profiles from digital ionograms, 3, Processing of bottomside ionograms, Radio Sci., 18, 477–492, 1983.
- [32]Reinisch, B.W., and X. Huang, Deducing topside profiles and total electron content from bottomside ionograms, Adv. Space Res., 27 (1), 23–30, 2001.
- [33]Reinisch, B.W., I.A. Galkin, G. Khmyrov, A. Kozlov, and D.F. Kitrosser, Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci., 2, 241–247, 2004a.
- [34]Reinisch, B.W., X.-Q. Huang, A. Belehaki, J.-K. Shi, and R. Ilma, Modeling the IRI topside profile using scale heights from ground-based ionosonde measurements, Adv. Space Res., 34, 2026–2031, 2004b.
- [35]Reinisch, B.W., X. Huang, I.A. Galkin, V. Paznukhov, and A. Kozlov, Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes, J. Atmos. Sol Terr. Phys., 67, 1054–1062, 2005.
- [36]Reinisch, B.W., I.A. Galkin, G.M. Khmyrov, et al., Advancing digisonde technology: the DPS-4D, Radio Sounding Plasma Phys., AIP Conf. Proc., 974, 127–143, 2008.
- [37]Richards, P.G., Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, DOI: 10.1029/2011JA016613, 2011.
- [38]Richards, P.G., and D.G. Torr, Ratios of photoelectron to EUV ionization rates for aeronomic studies, J. Geophys. Res., 93, 4060–4066, 1988.
- [39]Richards, P.G., J.A. Fennelly, and D.G. Torr, EUVAC: a solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981–8992, 1994. [NASA ADS]
- [40]Scherliess, L., and B.G. Fejer, Radar and satellite global equatorial F region vertical drift model, J. Geophys. Res., 104 (A4), 6829–6842, 1999.
- [41]Shim, J.S., M. Kuznetsova, L. Rastatter, D. Bilitza, M. Butala, et al., CEDAR electrodynamics thermosphere ionosphere (ETI) challenge for systematic assessment of ionosphere/hermosphere models: electron density neutral density NmF2 and hmF2 using space based observations, Space Weather, 10, S10004, s234, DOI: 10.1029/2012SW000851, 2012.
- [42]Stoneback, R.A., R.A. Heelis, A.G. Burrell, W.R. Coley, B.G. Fejer, and E. Pacheco, Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009, J. Geophys. Res., 116, A12327, DOI: 10.1029/2011JA016712,2011.
- [43]Sutton, E.K., Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite Accelerometer Data, A thesis submitted to the Faculty of the Graduate School of the University of Colorado for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences, 2008.
- [44]Titheridge, J.E., The real height analysis of ionograms: a generalized formulation, Radio Sci., 23 (5), 831–849, 1988.
- [45]Torr, M.R., D.G. Torr, R.A. Ong, and H.E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6, 771–774, 1979.
- [46]Varney, R.H., D.L. Hysell, and J.D. Huba, Sensitivity studies of equatorial topside electron and ion temperatures, J. Geophys. Res., 116, A06321, DOI: 10.1029/2011JA016549, 2011.
PDF