期刊论文详细信息
Journal of Space Weather and Space Climate
Solar activity and transformer failures in the Greek national electric grid
Ioannis Panayiotis Zois1 
[1] Testing Research and Standards Centre, Public Power Corporation,9 Leontariou street,GR 153 51, Kantza, Pallini, Athens, Attica,Greece
关键词: aeronomy;    non-linear phenomena;    technological system;    solar activity;    geomagnetically induced currents (GIC);   
Others  :  800668
DOI  :  doi:10.1051/swsc/2013055
 received in 2012-08-03, accepted in 2013-10-27,  发布年份 2013
PDF
【 摘 要 】

Aims: We study both the short term and long term effects of solar activity on the large transformers (150 kV and 400 kV) of the Greek national electric grid. Methods: We use data analysis and various statistical methods and models. Results: Contrary to common belief in PPC Greece, we see that there are considerable both short term (immediate) and long term effects of solar activity onto large transformers in a mid-latitude country like Greece. Our results can be summarised as follows:For the short term effects: During 1989–2010 there were 43 “stormy days” (namely days with for example Ap ≥ 100) and we had 19 failures occurring during a stormy day plus or minus 3 days and 51 failures occurring during a stormy day plus or minus 7 days. All these failures can be directly related to Geomagnetically Induced Currents (GICs). Explicit cases are briefly presented.

【 授权许可】

   
© I.P. Zois, Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707201644945.pdf 457KB PDF download
Figure 4. 25KB Image download
Figure 3. 48KB Image download
Figure 2. 19KB Image download
Figure 1. 23KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Adams, W.G., Comparison of simultaneous magnetic disturbance at several observatories, Phil. Trans. London (A), 183, 131, 1892.
  • [2]Akasofu, S.-I., and S. Chapman, On the asymmetric development of magnetic storm field in low and middle latitudes, Planet. Space Sci., 12, 607, 1964.
  • [3]Akasofu, S.-I., and S. Chapman, Solar Terrestrial Physics, Oxford University Press, Oxford, 1972.
  • [4]Barlow, J.L., Chapter 9: Numerical Aspects of Solving Linear Least Squares Problems. In C.R. Rao, Handbook of statistics – computational statistics, Amsterdam, London, New York, Tokyo, North Holland, p. 920, ISBN: 0-444-88096-8, 1993.
  • [5]Bartels, J., N.H. Heck, and H.F. Johnston, The three-hour range index measuring geomagnetic activity, Geophys. Res., 44, 411–454, 1939.
  • [6]Björck, Åke., Numerical methods for least squares problems, SIAM, Philadelphia, 1996.
  • [7]Bossi, A., J.E. Dind, J.M. Frisson, U. Khoudiakov, H.F. Light, D.V. Narke, Y. Tournier, and J. Verdon, An international survey on failures in large power transformers in service, Cigré Electra, 88, 21–48, 1983.
  • [8]Broun, J.A., On the horizontal force of the Earth’s magnetism, Proc. Roy. Soc. Edinburgh, 22, 511, 1861.
  • [9]Cahill, L.J.., Jr, Inflation of the inner magnetosphere during a magnetic storm, J. Geophys. Res., 71, 4505, 1966.
  • [10]Campbell, W.H., Introduction to Geomagnetic Fields, Cambridge University Press, 2002.
  • [11]Carlowicz, M., and R. Lopez, Storms from the Sun, National Academies Press, 2002.
  • [12]Chambers, J.M., and T.J. Hastie, Statistical Models in S. Wadsworth & Brooks/Cole, 1992.
  • [13]Chapman, S., The electric current-systems of magnetic storms, Terr. Mag. Atomos. Phys., 40, 349, 1935.
  • [14]Chapman, S., and V.C.A. Ferraro, A new theory of magnetic storms, Nature, 129, 3169, 1930.
  • [15]Chapman, S., The morphology of magnetic storms: an extension of the analysis of Ds, the disturbance local-time inequality, Annali di Geofisica, 5, 481, 1952.
  • [16]Coetzee, G., and C.T. Gaunt, Transformer failures in regions incorrectly considered to have low GIC-risk, APAN (All Partners Access Network), US Department of Defence, https://community.apan.org/space_weather_task_force/m/mediagallery/107001.aspx, 2007.
  • [17]Cohen, J., P. Cohen, S.G. West, and L.S. Aiken, Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 2nd ed. Lawrence Erlbaum Associates, Hillsdale, NJ, 2003.
  • [18]Crooker, N.U., and G.L. Siscoe, Birkeland currents as the cause of the low-latitude asymmetric disturbance field, J. Geophys. Res., 86, 11201, 1981.
  • [19]Daniel, W.W., and J.C. Terrell, Business Statistics for Management & Economics, Houghton Mifflin, 1995.
  • [20]Draper, N.R., and H. Smith, Applied Regression Analysis, Wiley Series in Probability and Statistics, 3rd ed., ISBN: 978-0-471-17082-2, 1998.
  • [21]Dessler, A.J., W.E. Francis, and E.N. Parker, Geomagnetic storm sudden – commencement rise times, J. Geophys. Res., 65, 9, 1960.
  • [22]Frank, L.A., Direct detection of asymmetric increases of extraterrestrial ring proton intensities in the outer radiation zone, J. Geophys. Res., 75, 1263, 1970.
  • [23]Fukushima, N., and Y. Kamide, Partial ring current models for world geomagnetic disturbances, Rev. Geophys. Space Phys., 11, 795, 1973.
  • [24]Gaunt, C.T., and J. Kohen, Geomagnetically Induced Currents at Mid-Latitudes, Proceedings of the XXVIIth URSI General Assembly in Maastricht, see http://www.ursi.org/Proceedings/ProcGA02/papers/p1065.pdf, 2009.
  • [25]Glicksberg, I., Measures Orthogonal to Algebras and Sets of Antisymmetry, Trans. Am. Math. Soc., 105 (3), 415–435, 1962.
  • [26]Goodall, C.R., Chapter 13: Computation using the QR decomposition. In C.R. Rao, Handbook of Statistics – Computational Statistics, Amsterdam, London, New York, Tokyo, North Holland, p. 852, ISBN: 0-444-88096-8, 1993.
  • [27]Hamilton, D.C., G. Gloeckler, F.M. Ipavich, W. Stüdemann, B. Wilken, and G. Kremser, Ring current development during the great geomagnetic storm of February 1986, J. Geophys. Res., 93, 14343, 1988.
  • [28]Haymes, Robert C., Introduction to Space Science, Wiley & sons, 1971.
  • [29]Hess, W.N., The Radiation Belt and Magnetosphere, Blaisdell Publishing Co, 1968.
  • [30]Jeffreys, H., Weierstrass’s Theorem on Approximations by Polynomials, in Methods of Mathematical Physics, 3rd ed., Cambridge University Press, 1988.
  • [31]Kallio, E., T.I. Pulkkinen, H.H.J. Koskinen, A. Viljanen, Loading-unloading processes in the nightside ionosphere, J. Geophys. Res., 27, 125, 2000.
  • [32]Kamide, Y., and W. Baumjohann, Magnetosphere-ionosphere coupling, Physics and Chemistry in Space, 23, 112, 1993.
  • [33]Kamide, Y., Geomagnetic Storms as a Dominant Component of Space Weather: Classic Picture and Recent Issues. In Space Storms and Space Weather Hazards, Nato Science Series, Ed. I. Daglis (Kluwer Academic Publishers), 43, 2001.
  • [34]Kaw, A., and E. Kalu, Numerical Methods with Applications (Chapter 6 deals with linear and non-linear regression), Florida University Press, p. 145, Paperback, ISBN: 978-0-578-05765-1, 2008.
  • [35]Kennedy Jr, and J.E. Gentle, W.J., Statistical Computing, Marcel Dekker, 1980.
  • [36]Kertz, W., Ein neues Mass für die Feldstärke des erdmagnetischen aquatorialen Ringstroms, Abh. Akad. Wiss. Göttingen Math. Phys., 2, 83, 1958.
  • [37]Kertz, W., Ring current variations during the IGY, Ann. Int. Geophys., 35, 49, 1964.
  • [38]Kivelson, M., and C. Russell, Introduction to Space Physics, Cambridge University Press, 1995.
  • [39]Koen, J., and C.T. Gaunt, Disturbances in the Southern African power network due to geomagnetically induced currents, Cigré Session, Paper 36-206, Paris, 2002.
  • [40]Langel, R.A., R.H. Estes, G.D. Mead, E.B. Fabiano, and E.R. Lancaster, Initial geomagnetic field model from Magsat vector data, Geophys. Res. Lett., 7, 793, 1980.
  • [41]Langel, R.A., J. Berbert, T. Jennings, and R. Horner. Magsat data processing: a report for investigators, NASA Technical Memorandum 82160, Goddard Space Flight Center, 1981
  • [42]Lehtinen, M., and R. Pirjola, Currents produced in earthed conductor networks by geomacnetically induced electric fields, Ann. Geophys., 3, 4, 1985.
  • [43]Lindahl, S., Effects of geomagnetically induced currents on protection systems, Elforsk Report 03:34, Elforsk AB, Stockholm, Sweden
  • [44]Mayaud, P.N., Derivation, Meaning, and Use of Geomagnetic Indices, Geophysical Monograph 22, American Geophysical Union, Washington, DC, 1980.
  • [45]Minhas, M.S.A., J.P. Reynders, and P.J. De Klerk, Failures in power system transformers and appropriate monitoring techniques, Proc. 11th International Symposium on High Voltage Engineering (Conf. Publ. No 467), London, Vol. 1, pp. 94–97, 1999.
  • [46]Moos, N.A.F., Magnetic observations made at the government observatory, Bombay, for the period 1846 to 1905, and their discussion, Part II: the phenomenon and its discussion, Bombay, 1910.
  • [47]Nievergelt, Y., Total least squares: state-of-the-art regression in numerical analysis, SIAM Rev., 36 (2), 258–264, 1994.
  • [48]Parks, George K., Physics of Space Plasmas “1”: An Introduction, Addison-Wesley, 1991.
  • [49]Pedhazur, E., Multiple Regression in Behavioral Research: Explanation and Prediction, 2nd ed., Holt, Rinehart and Winston, New York, 1982.
  • [50]Pindyck, R.S., and D.L. Rubinfeld, Econometric Models and Economic Forecasts, ch. 1 (Introduction including appendices on Σ operators & derivation of parameter estimations) & Appendix 4.3 (multiple regression in matrix form), 4th ed., 1998.
  • [51]Price, P.R., Geomagnetically induced current effects on transformers, IEEE Trans. Power Delivery, 17 (4), 1002–1008, 2002.
  • [52]Pulkkinen, A., Geomagnetic Induction During Highly Disturbed Space Weather Conditions: Studies of Ground Effects, Finnish Meteorological Institut, Helsinki, Finland, 2003.
  • [53]Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov, Modelling of space weather effects on pipelines, J. Appl. Geophys., 48, 233, 2001a.
  • [54]Pulkkinen, A., A. Viljanen, K. Pajunpaa, and R. Pirjola, Recordings and occurrence of geomagnetically induced currents in the Finnish natural gas pipeline network, J. Appl. Geophys., 48, 219, 2001b.
  • [55]Pulkkinen, A., O. Amm, A. Viljanen, and BEAR Working Group, Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res., 108, DOI: 10.1029/2001JA005085, 2003a.
  • [56]Pulkkinen, A., A. Thomson, E. Clarke, and A. McKay, April 2000 geomagnetic storm: ionospheric drivers of large geomagnetically induced currents, Ann. Geophys., 21, 709, 2003b.
  • [57]Pulkkinen, A., O. Amm, A. Viljanen, and BEAR Working Group, Separation of the geomagnetic variation field on the ground into external and internal parts using the spherical elementary current system method, Earth, Planets Space, 55, 117, 2003c.
  • [58]Pulkkinen, A., R. Pirjola, and A. Viljanen, Statistics of extreme geomagnetically induced current events, Space Weather, 6, S07001, 2008.
  • [59]Pulkkinen, A., M. Hesse, H. Shahid, L. Van der Zel, B. Damsky, F. Policelli, D. Fugate, W. Jacobs, and E. Creamer, Solar shield: forecasting and mitigating space weather effects on high-voltage power transmission systems, Nat Hazards, 53, 333–345, 2010.
  • [60]Pulkkinen, A., E. Bernaneu, J. Eichner, C. Beggan, and A. Thomson, Generation geomagnetically induced current scenarios, Submitted, 2012.
  • [61]Rangarajan, G.K., Indices of Geomagnetic Activity. In Geomagnetism, Ed. J.A. Jacobs (Academic Press, London), p. 323, 1989.
  • [62]Rostoker, G., Geomagnetic Indices, Rev. Geophys. Space Phys., 10, 157, 1972.
  • [63]Rudin, W., Principles of Mathematical Analysis, 3rd. ed., McGraw-Hill, 1976.
  • [64]Schrijver, C.J., and S.D. Mitchell, Disturbances in the US electric grid associated with geomagnetic activity, J. Space Weather Space Clim., 3, A19, http://dx.doi.org/10.1051/swsc/2013041, 2013.
  • [65]Shapiro, S.S., and M.B. Wilk, An analysis of variance test for normality (complete samples), Biometrica, 52 (3–4), 591–611, 1965.
  • [66]Shelley, E.O., Heavy ions in the magnetosphere, Space Sci. Rev., 23, 465, 1979.
  • [67]Smith, P.H., N.K. Bewtra, and R.A. Hoffman, Inference of the ring current ion composition by means of charge exchange decay, J. Geophys. Res., 86, 34–70, 1981.
  • [68]Snedecor, G.W., and W.G. Cochran, Statistical Methods, 8th ed., Iowa State University Press, 1989.
  • [69]Sugiura, M., Dst Index, http://wdc.kugi.kyoto-u.ac.jp/dstdir/, 1991.
  • [70]Sugiura, M., and S. Hendricks, Provisional hourly values of equatorial Dst for 1961, 1962 and 1963, NASA Tech. note D-4047, 1967.
  • [71]Takasu, N., T. Oshi, F. Miyawaki, S. Saito, and Y. Fujiwara, An experimental analysis of DC excitation of transformers by geomagnetically induced currents, IEEE Trans. Power Delivery, 9, 1173–1179, 1994.
  • [72]Tascione, Thomas.F., Introduction to the Space Environment, 2nd ed., Kreiger, Malabar, FL, 1994.
  • [73]Tsunomura, S., Characteristics of geomagnetic sudden commencement observed in middle and low latitudes, Earth, Planets, Space, 50, 1998.
  • [74]Tsurutani, B., and W. Gonzalez, The interplanetary causes of magnetic storms: a review, Magnetic Storms, AGU Geophysical Monograph, 98, 1997.
  • [75]United States National Academy of Sciences Report, Severe Space Weather Events – Understanding Societal and Economic Impacts Workshop Report, http://www.nap.edu/catalog.php?record_id=12507, 2008.
  • [76]United Kingdom Royal Academy of Engineering, Extreme Space Weather: impacts on engineered systems and infrastructure, http://www.raeng.org.uk/news/publications/list/reports/Space_Weather_Full_Report_Final.PDF, 2013.
  • [77]Van Allen James, A., Origins of Magnetospheric Physics, Smithsonian Institution Press, 1983.
  • [78]Venables, W.N., and D.M. Smith, An Introduction to R (On line Notes on R), http://cran.r-project.org/doc/manuals/R-intro.pdf, 2013.
  • [79]Vestine, E.H., L. Laporte, I. Lange, and W.E. Scott, The geomagnetic field, its description and analysis, Carnegie Institution of Washington Publication, Washington DC, p. 580, 1947.
  • [80]Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, and T. Korja, Fast computation of the geoelectric field using method of elementary current system and planar earth models, Ann. Geophys., 22, 101–113, 2004.
  • [81]Walt, M., Introduction to Geomagnetically Trapped Radiation, Cambridge University Press, New York, NY, 1994.
  • [82]Williams, D.J., Ring Current Composition and Sources. In Dynamics of the Magnetosphere, Ed. S.-I., Akasofu (D. Reidel Publishing Company), p. 407, 1980.
  • [83]Williams, D.J., Ring current composition and sources: an update, Planet. Space Sci., 29, 1195, 1981.
  • [84]Zois, I.P., A new invariant for σ-models, Commun. Math. Phys., 209, 757–783, 2009.
  • [85]Zois, I.P., 18 Lectures on K-Theory, arxiv.org 1008.1346, 2010.
  • [86]Zois, I.P., Solar activity and transformer failures in the Greek national electric grid I: Linear phenomena, talk given during the 8th European Space Weather Week-Session 3A, GIC Advances and Developing Mitigation Procedures, 28 Nov–2 Dec, Namur, Belgium, 2011.
  • [87]Zois, I.P., The Effects of solar Activity onto Transformers in the Greek National Electric Grid (Part II: Non-linear phenomena), 9th European Space Weather Week, 5–9 Nov, Brussels, Belgium, Académie Royale de Belgique, http://www.stce.be/esww9/program/poster1.php, 2012.
  • [88]Zois, I.P., Modeling the effects of solar activity on the Greek National Electric Grid, International Conference on Mathematical Modeling in Physical Sciences, 1–5 September, Prague, Czech Republic, http://www.icmsquare.net/index.php?option=com_sessions&view=program&Itemid=85, 2013a.
  • [89]Zois, I.P., Solar Activity and Transformer Failures in Greece (3): New Results on non Linear Regression Analysis, Developing Societal Resilience Against Space Weather 10th European Space Weather Week, 18–22 Nov, Antwerp, Belgium, http://www.stce.be/esww10/sessions/02resilience.php, 2013b.
  • [90]Zois, I.P., Solar Activity and Transformer Failures in the Greek National Electric Grid, [arXiv: 1307.1149], 2013.
  文献评价指标  
  下载次数:35次 浏览次数:30次