Journal of Space Weather and Space Climate | |
Evaluation of the performance of DIAS ionospheric forecasting models | |
Ioanna Tsagouri1  | |
[1] National Observatory of Athens, Institute for Space Applications and Remote Sensing, Metaxa and Vas. Pavlou,15236P. Penteli,Greece | |
关键词: midlatitude ionosphere; magnetosphere interactions; ionosphere; ionospheric disturbances; ionospheric storms; modeling and forecasting; | |
Others : 800726 DOI : doi:10.1051/swsc/2011110003 |
|
received in 2011-01-14, accepted in 2011-06-30, 发布年份 2011 | |
【 摘 要 】
Nowcasting and forecasting ionospheric products and services for the European region are regularly provided since August 2006 through the European Digital upper Atmosphere Server (DIAS, http://dias.space.noa.gr). Currently, DIAS ionospheric forecasts are based on the online implementation of two models: (i) the solar wind driven autoregression model for ionospheric short-term forecast (SWIF), which combines historical and real-time ionospheric observations with solar-wind parameters obtained in real time at the L1 point from NASA ACE spacecraft, and (ii) the geomagnetically correlated autoregression model (GCAM), which is a time series forecasting method driven by a synthetic geomagnetic index. In this paper we investigate the operational ability and the accuracy of both DIAS models carrying out a metrics-based evaluation of their performance under all possible conditions. The analysis was established on the systematic comparison between models’ predictions with actual observations obtained over almost one solar cycle (1998–2007) at four European ionospheric locations (Athens, Chilton, Juliusruh and Rome) and on the comparison of the models’ performance against two simple prediction strategies, the median- and the persistence-based predictions during storm conditions. The results verify operational validity for both models and quantify their prediction accuracy under all possible conditions in support of operational applications but also of comparative studies in assessing or expanding the current ionospheric forecasting capabilities.
【 授权许可】
© Owned by the authors, Published by EDP Sciences 2011
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140707204345614.pdf | 1515KB | download | |
Fig. 11. | 33KB | Image | download |
Fig. 10. | 46KB | Image | download |
Fig. 9. | 43KB | Image | download |
Fig. 8. | 35KB | Image | download |
Fig. 7. | 33KB | Image | download |
Fig. 6. | 66KB | Image | download |
Fig. 5. | 49KB | Image | download |
Fig. 4. | 43KB | Image | download |
Fig. 3. | 39KB | Image | download |
Fig. 2. | 127KB | Image | download |
Fig. 1. | 78KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
【 参考文献 】
- [1]Araujo-Pradere, E.A., and Fuller-Rowell, T.J., STORM: An empirical storm-time ionospheric correction model, 2. Validation, Radio Sci., 37, 1071, 2002.
- [2]Araujo-Pradere, E.A., T.J. Fuller-Rowell, and D. Bilitza, Validation of the STORM response in IRI2000, J. Geophys. Res., 108 (A3), 1120, DOI: 10.1029/2002JA009720, 2003.
- [3]Araujo-Pradere, E.A., T.J. Fuller-Rowell, and D. Bilitza, Ionospheric variability for quiet and disturbed conditions, Adv. Space Res., 34, 1914–1921, 2004.
- [4]Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu, STORM: An empirical storm-time ionospheric correction model, 1. Model description, Radio Sci., 37, 1070, DOI: 10.1029/2001RS002447, 2002.
- [5]Belehaki, A., L.R. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather, 4, S12002, DOI: 10.1029/2006SW000270, 2006.
- [6]Belehaki, A., L.R. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, and M. Hatzopoulos, Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project, Acta Geophys., 55 (3), 398–409, 2007. [NASA ADS]
- [7]Belehaki, A., I. Stanislawska, and J. Lilensten, An overview of ionosphere-thermosphere models available for space weather purposes, Space Sci. Rev., 147 (3–4), 271–313, DOI: 10.1007/s11214-009-9510-0, 2009a.
- [8]Belehaki, A., J. Watermann, A. Lilensten, M. Glover, M. Hapgood, M. Messerotti, R. van der Linden, and H. Lundstedt, Renewed support dawns in Europe: An action to develop space weather products and services, Space Weather – Int. J. Res.Appl., 7, art. no. S03001, 2009b.
- [9]Bilitza, D., International reference ionosphere 2000, Radio Sci., 36 (2), 261–276, 2001.
- [10]Cander, L.R., Toward forecasting and mapping ionospheric space weather under the COST actions, Adv. Space Res., 31 (4), 957–964, 2003.
- [11]Doggett, K., (ed.), Proceedings of a Workshop at Boulder, Colorado, June 19–21, 1996, NOAA/SEC, Boulder, 1996.
- [12]Galkin, I.A., G.M. Khmyrov, A. Kozlov, B.W. Reinisch, X. Huang, and D.F. Kitrosser,, Ionosonde networking, databasing, and Web serving, Radio Sci., 41 (5): art. no. RS5S33, 2006.
- [13]Gonzalez, W.D., B.T. Tsurutani, and A.L.C. de Gonzalez, Interplanetary origin of geomagnetic storms, Space Sci. Rev., 88, 529–562, 1999.
- [14]Hesse, M., P.Bellaire, and R. Robinson, Community Coordinated Modeling Center: A new approach to space weather modeling, Proceedings of the Space Weather Workshop: Looking Towards a European Space Weather Programme, 17–19 December 2001, ESTEC, Noordwijk, The Netherlands, 2001.
- [15]Koutroumbas, K., and A. Belehaki, One-step ahead prediction of foF2 using time series forecasting techniques, Ann. Geophys., 23, 3035–3042, 2005.
- [16]Koutroumbas, K., I. Tsagouri, and A. Belehaki, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys., 26 (2), 371–386, 2008.
- [17]Kutiev, I., and P. Muhtarov, Modeling of midlatitude F region response to geomagnetic activity, J. Geophys. Res., 106 (A8), 15501–15509, 2001.
- [18]Kutiev, I., and P. Muhtarov, Empirical modeling of global ionospheric foF(2) response to geomagnetic activity, J Geophys. Res, 108 (A1): art. no. 1021, 2003. [PubMed]
- [19]McKinnell, L.A., and A.W.V. Poole, Ionospheric variability and electron density profile studies with neural networks, Adv. Space Res., 27 (1), 83–90, 2001.
- [20]Mikhailov, A.V., V.H. Depuev, and A.H. Depueva, Short-term foF2 forecast: Present day state of art, in space weather: Research towards applications in Europe, Astrophys. Space Sci. Libr., 344, 169–184, 2007.
- [21]Muhtarov, P., and I. Kutiev, Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data, Radio Sci., 34 (2), 459–464, 1999.
- [22]Muhtarov, P., I. Kutiev, and L.R. Cander, Geomagnetically correlated autoregression model for short-term prediction of ionopsheric parameters, Inverse Prob., 18, 49–65, 2002.
- [23]NSWP – National Space Weather Program Implementation Plan, 2nd edition, July 2000 (http://www.ofcm.gov/).
- [24]Pietrella, M., and L.Perrone, A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys., 26, 323–334, 2008.
- [25]Pittock, A.B., A critical look at long-term sun-weather relationships, Rev. Geophys., 16 (3) 400–420, 1978.
- [26]Spence, H., D. Baker, A. Burns, T. Guild, C.-L. Huang, G. Siscoe, and R. Weigel, Center for integrated space weather modeling metrics plan and initial model validation, J. Atmos. Solar-Terr. Phys., 66/15–16, 1499, 2004.
- [27]Stanislawska, I., and Z. Zbyszynski, Forecasting of the ionospheric quiet and disturbed foF2 values at a single location, Radio Sci., 36 (5), 1065–1071, 2001.
- [28]Stanislawska, I., and Z. Zbyszynski, Forecasting of the ionospheric characteristics during quiet and disturbed conditions, Ann. Geophys., 45 (1), 169–175, 2002.
- [29]Thacker, B.H., S.W. Doebling, F.M. Hemez, M.C. Anderson, J.E. Pepin, and E.A. Rodriquez, Concepts of model verification and validation, Technical Report, Los Alamos National Lad, Los Alamos, NM, USA, DOI: 102172/835920, 2004.
- [30]Tsagouri, I., and A. Belehaki, A new empirical model of middle latitude ionospheric response for space weather applications, Adv. Space Res., 37, 420–425, 2006.
- [31]Tsagouri, I., and A. Belehaki, An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm time response, J. Atmos. Solar-Terr. Phys., 70, 2061–2076, DOI: 10.1016/j.jastp.2008.09.010, 2008.
- [32]Tsagouri, I., K. Koutroumbas, and A. Belehaki, Ionospheric foF2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Sci., 44, RS0A35, DOI: 10.1029/2008RS004112, 2009.
- [33]Tulunay, Y., E. Tulunay, and E.T. Senalp, The neural network technique – 1: A general exposition, Adv. Space Res., 33, 983–987, 2004a.
- [34]Tulunay, Y., E. Tulunay, and E.T. Senalp, The neural network technique – 2: An ionospheric example illustrating its application, Adv. Space Res., 33, 988–992, 2004b.
- [35]Vassiliadis, D., Forecasting space weather, Space Weather – Physics and Effects, Springer Praxis Books, 403–425, DOI: 10.1007/978-3-540-34578-7_14, 2007.
- [36]Wintoft, P., and L.R. Cander, Twenty-four hour predictions of foF2 using time delay neural networks, Radio Sci., 35 (2), 395–408, 2000a.
- [37]Wintoft, P., and L.R. Cander, Ionospheric foF2 storm forecasting using neural networks, Phys. Chem. Earth, 25 (4) 267–273, 2000b.