期刊论文详细信息
Journal of Space Weather and Space Climate
Photometric magnetic-activity metrics tested with the Sun: application to Kepler M dwarfs
Tugdual Ceillier2  Rafael A. García2  David Salabert2  Savita Mathur1 
[1] Space Science Institute, 4750 Walnut Street, Suite #205,Boulder,CO,USA;Laboratoire AIM, CEA/DSM – CNRS – Univ. Paris Diderot – IRFU/SAp, Centre de Saclay,91191Gif-sur-Yvette Cedex,France
关键词: M dwarfs;    Asteroseismology;    Solar activity;    Stellar activity;   
Others  :  800613
DOI  :  doi:10.1051/swsc/2014011
 received in 2013-09-18, accepted in 2014-04-01,  发布年份 2014
PDF
【 摘 要 】

The Kepler mission has been providing high-quality photometric data leading to many breakthroughs in the exoplanet search and in stellar physics. Stellar magnetic activity results from the interaction between rotation, convection, and magnetic field. Constraining these processes is important if we want to better understand stellar magnetic activity. Using the Sun, we want to test a magnetic activity index based on the analysis of the photometric response and then apply it to a sample of M dwarfs observed by Kepler. We estimate a global stellar magnetic activity index by measuring the standard deviation of the whole time series, Sph. Because stellar variability can be related to convection, pulsations or magnetism, we need to ensure that this index mostly takes into account magnetic effects. We define another stellar magnetic activity index as the average of the standard deviation of shorter subseries which lengths are determined by the rotation period of the star. This way we can ensure that the measured photometric variability is related to starspots crossing the visible stellar disc. This new index combined with a time-frequency analysis based on the Morlet wavelets allows us to determine the existence of magnetic activity cycles. We measure magnetic indexes for the Sun and for 34 M dwarfs observed by Kepler. As expected, we obtain that the sample of M dwarfs studied in this work is much more active than the Sun. Moreover, we find a small correlation between the rotation period and the magnetic index. Finally, by combining a time-frequency analysis with phase diagrams, we discover the presence of long-lived features suggesting the existence of active longitudes on the surface of these stars.

【 授权许可】

   
© S. Mathur et al., Published by EDP Sciences 2014

【 预 览 】
附件列表
Files Size Format View
20140707194446365.pdf 2543KB PDF download
Fig. 5. 69KB Image download
Fig. 4. 132KB Image download
Fig. 3. 29KB Image download
Fig. 2. 92KB Image download
Fig. 1. 91KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Baglin, A., M. Auvergne, L. Boisnard, T. Lam-Trong, P. Barge, et al., CoRoT: a high precision photometer for stellar evolution and exoplanet finding, in: COSPAR, Plenary Meeting, Vol. 36, 36th COSPAR Scientific Assembly, 3749, 2006.
  • [2]Baliunas, S.L., R.A. Donahue, W.H. Soon, J.H. Horne, J. Frazer, et al., Chromospheric variations in main-sequence stars, Astrophys. J., 438, 269, 1995. [NASA ADS]
  • [3]Barclay, T., J.F. Rowe, J.J. Lissauer, D. Huber, F. Fressin, et al., A sub-Mercury-sized exoplanet, Nature, 494, 452, 2013. [NASA ADS]
  • [4]Basri, G., L.M. Walkowicz, N. Batalha, R.L. Gilliland, J. Jenkins, et al., Photometric variability in Kepler target stars: the sun among stars – a first look, Astrophys. J. Lett., 713, L155, 2010. [NASA ADS]
  • [5]Basri, G., L.M. Walkowicz, and A. Reiners, Comparison of Kepler photometric variability with the sun on different timescales, Astrophys. J., 769, 37, 2013. [NASA ADS]
  • [6]Beck, P.G., T.R. Bedding, B. Mosser, D. Stello, R.A. García, et al., Kepler detected gravity-mode period spacings in a red giant star, Science, 332, 205, 2011. [NASA ADS][PubMed]
  • [7]Beck, P.G., J. Montalban, T. Kallinger, J. De Ridder, T. Aerts, et al., Fast core rotation in red-giant stars as revealed by gravity dominated mixed modes, Nature, 481, 55, 2012. [NASA ADS]
  • [8]Bedding, T.R., B. Mosser, D. Huber, J. Montalbán, P. Beck, et al., Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars, Nature, 471, 608, 2011. [NASA ADS][PubMed]
  • [9]Berdyugina, S.V., D. Moss, D. Sokoloff, and I.G. Usoskin, Active longitudes, nonaxisymmetric dynamos and phase mixing, A&A, 445, 703, 2006. [NASA ADS]
  • [10]Borucki, W.J., D. Koch, G. Basri, D. Caldwell, J. Christensen-Dalsgaard, et al., Kepler planet-detection mission: introduction and first results, Science, 327, 977, 2010. [NASA ADS][PubMed]
  • [11]Brown, T.M., D.W. Latham, M.E. Everett, and G.A. Esquerdo, Kepler input catalog: photometric calibration and stellar classification, Astron. J., 142, 112, 2011. [NASA ADS]
  • [12]Brun, A.S., M.S. Miesch, and J. Toomre, Modeling the dynamical coupling of solar convection with the radiative interior, Astrophys. J., 742, 79, 2011. [NASA ADS]
  • [13]Campante, T.L., R. Handberg, S. Mathur, T. Appourchaux, Bedding, et al., Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273, A&A, 534, A6, 2011. [NASA ADS]
  • [14]Chaplin, W.J., H. Kjeldsen, J. Christensen-Dalsgaard, S. Basu, A. Miglio, et al., Ensemble asteroseismology of solar-type stars with the NASA Kepler mission, Science, 332, 213, 2011. [NASA ADS][PubMed]
  • [15]Deheuvels, S., G. Doğan, M.J. Goupil, T. Appourchaux, O. Benomar, et al., Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants, A&A, 564, A27, 2014.
  • [16]Deheuvels, S., R.A. García, W.J. Chaplin, S. Basu, H.M. Antia, et al., Seismic evidence for a rapidly rotating core in a lower giant-branch star observed with Kepler, Astrophys. J., 756, 19, 2012. [NASA ADS]
  • [17]Dikpati, M., and P.A. Gilman, Simulating and predicting solar cycles using a flux-transport dynamo, Astrophys. J., 649, 498, 2006. [NASA ADS]
  • [18]Domingo, V., B. Fleck, and A.I. Poland, The SOHO mission: an overview, Sol. Phys., 162, 1, 1995. [NASA ADS]
  • [19]Fares, R., J.-F. Donati, C. Moutou, D. Bohlender, C. Catala, et al., Magnetic cycles of the planet-hosting star τ Bootis – II. A second magnetic polarity reversal, Mon. Not. R. Astron. Soc., 398, 1383, 2009. [NASA ADS][MathSciNet]
  • [20]Frick, P., S.L. Baliunas, D. Galyagin, D. Sokoloff, and W. Soon, Wavelet analysis of stellar chromospheric activity variations, Astrophys. J., 483, 426, 1997. [NASA ADS]
  • [21]Fröhlich, C., J. Romero, H. Roth, C. Wehrli, B.N. Andersen, et al., VIRGO: experiment for helioseismology and solar irradiance monitoring, Sol. Phys., 162, 101, 1995. [NASA ADS]
  • [22]García, R.A., S. Hekker, D. Stello, J. Gutierrez-Soto, R. Handberg, et al., Preparation of Kepler light curves for asteroseismic analyses, Mon. Not. R. Astron. Soc., 414, L6, 2011.
  • [23]García, R.A., A. Jiménez, S. Mathur, S. Mathur, S. Mathur, et al., Update on g-mode research, Astron. Nachr., 329, 476, 2008. [NASA ADS]
  • [24]García, R.A., S. Mathur, D. Salabert, J. Ballot, C. Regulo, et al., CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star, Science, 329, 1032, 2010. [NASA ADS][PubMed]
  • [25]García, R.A., D. Salabert, S. Mathur, C. Regulo, J. Ballot, et al., Towards solar activity maximum 24 as seen by GOLF and VIRGO/SPM instruments, J. Phys. Conf. Ser., 440, 012020, 2013. [NASA ADS]
  • [26]García, R.A., S. Turck-Chièze, P. Boumier, J.M. Robillot, L. Bertello, et al., Global solar Doppler velocity determination with the GOLF/SoHO instrument, A&A, 442, 385, 2005. [NASA ADS]
  • [27]García, R.A., S. Turck-Chièze, S.J. Jiménez-Reyes, et al., Tracking solar gravity modes: the dynamics of the solar core, Science, 316, 1591, 2007. [NASA ADS][PubMed]
  • [28]Gilliland, R.L., J.M. Jenkins, W.J. Borucki, S.T. Bryson, D.A. Caldwell, et al., Initial characteristics of Kepler short cadence data, Astrophys. J. Lett., 713, L160, 2010. [NASA ADS]
  • [29]Grec, G., E. Fossat, and M.A. Pomerantz, Full-disk observations of solar oscillations from the geographic South Pole – Latest results, Sol. Phys., 82, 55, 1983. [NASA ADS]
  • [30]Hall, J.C., Stellar chromospheric activity, Liv. Rev. Sol. Phys., 5, 2, 2008.
  • [31]Hall, J.C., G.W. Henry, and G.W. Lockwood, The sun-like activity of the Solar Twin 18 Scorpii, Astron. J., 133, 2206, 2007. [NASA ADS]
  • [32]Howell, S.B., J.F. Rowe, S.T. Bryson, S.T. Quinn, G.W. Marcy, et al., Kepler-21b: A 1.6 R Earth planet transiting the bright oscillating F Subgiant Star HD 179070, Astrophys. J., 746, 123, 2012. [NASA ADS]
  • [33]Huber, D., T.R. Bedding, D. Stello, S. Hekker, S. Mathur, et al., Testing scaling relations for solar-like oscillations from the main sequence to red giants using Kepler data, Astrophys. J., 743, 143, 2011. [NASA ADS]
  • [34]Huber, D., V. Silva Aguirre, J.M. Matthews, M.H. Pinsonneault, E. Gaidos, et al., Revised stellar properties of Kepler targets for the Quarter 1–16 transit detection run, Astrophys. J. Suppl. Ser., 211, 2, 2014.
  • [35]Jenkins, J.M., D.A. Caldwell, H. Chandrasekaran, J.D. Twicken, S.T. Bryson, et al., Initial characteristics of Kepler long cadence data for detecting transiting planets, Astrophys. J. Lett., 713, L120, 2010. [NASA ADS]
  • [36]Konstantinova-Antova, R., M. Aurière, P. Petit, C. Charbonnel, S. Tsvetkova, et al., Magnetic field structure in single late-type giants: the effectively single giant V390 Aurigae, A&A, 541, A44, 2012. [NASA ADS]
  • [37]Küker, M., and G. Rüdiger, Differential rotation and meridional flow on the lower zero-age main sequence: Reynolds stress versus baroclinic flow, Astron. Nachr., 332, 933, 2011. [NASA ADS]
  • [38]Marsden, S.C., P. Petit, S.V. Jeffers, J. Morin, R. Fares, et al., A Bcool magnetic snapshot survey of solar-type stars, Mon. Not. R. Astron. Soc., submitted (arXiv1311.3374), 2013.
  • [39]Mathur, S., Stellar activity cycles and contribution of the deep layers knowledge, in Proceedings of Stellar Pulsation 2011 (arXiv e-prints 1111.2065), 2011.
  • [40]Mathur, S., R.A. García, J. Ballot, T. Ceillier, D. Salabert, et al., Magnetic activity of F stars observed 329 by Kepler, A&A, 562, A124, 2014. [NASA ADS]
  • [41]Mathur, S., R.A. García, C. Régulo, O.L. Creevey, J. Ballot, et al., Determining global parameters of the oscillations of solar-like stars, A&A, 511, A46, 2010. [NASA ADS]
  • [42]Mathur, S., S. Hekker, R. Trampedach, J. Ballot, T. Kallinger, et al., Granulation in red giants: observations by the Kepler mission and three-dimensional convection simulations, Astrophys. J., 741, 119, 2011a. [NASA ADS]
  • [43]Mathur, S., R. Handberg, T. Campante, R.A. García, T. Appourchaux, et al., Solar-like oscillations in KIC 11395018 and KIC 11234888 from 8 months of Kepler data, Astrophys. J., 733, 95, 2011b. [NASA ADS]
  • [44]Mathur, S., T.S. Metcalfe, M. Woitaszek, H. Bruntt, G.A. Verner, et al., A uniform asteroseismic analysis of 22 solar-type stars observed by Kepler, Astrophys. J., 749, 152, 2012. [NASA ADS]
  • [45]McQuillan, A., S. Aigrain, and T. Mazeh, Measuring the rotation period distribution of field M dwarfs with Kepler, Mon. Not. R. Astron. Soc., 432, 1203, 2013. [NASA ADS]
  • [46]Mosser, B., Y. Elsworth, S. Hekker, D. Huber, T. Kallinger, et al., Characterization of the power excess of solar-like oscillations in red giants with Kepler, A&A, 537, A30, 2012a. [NASA ADS]
  • [47]Mosser, B., M.J. Goupil, K. Belkacem, E. Michel, D. Stello, et al., Probing the core structure and evolution of red giants using gravity-dominated mixed modes observed with Kepler, A&A, 540, A143, 2012b. [NASA ADS]
  • [48]Noyes, R.W., L.W. Hartmann, S.L. Baliunas, D.K. Duncan, and A.H. Vaughan, Rotation, convection, and magnetic activity in lower main-sequence stars, Astrophys. J., 279, 763, 1984. [NASA ADS]
  • [49]Oláh, K., Z. Kolláth, T. Granzer, K.G. Strassmeier, A.F. Lanza, et al., Multiple and changing cycles of active stars. II. Results, A&A, 501, 703, 2009. [NASA ADS]
  • [50]Radick, R.R., G.W. Lockwood, B.A. Skiff, and S.L. Baliunas, Patterns of variation among sun-like stars, Astrophys. J. Suppl. Ser., 118, 239, 1998. [NASA ADS]
  • [51]Reinhold, T., A. Reiners, and G. Basri, Rotation and differential rotation of active Kepler stars, A&A, 560, A4, 2013. [NASA ADS]
  • [52]Robertson, P., M. Endl, W.D. Cochran, and S.E. Dodson-Robinson, Hα activity of old M dwarfs: stellar cycles and mean activity levels for 93 low-mass stars in the solar neighborhood, Astrophys. J., 764, 3, 2013. [NASA ADS]
  • [53]Rowe, J.F., S.T. Bryson, G.W. Marcy, J.J. Lissauer, D. Jontof-Hutter, et al., Validation of Kepler’s Multiple Planet Candidates. III: Light Curve Analysis Announcement of Hundreds of New Multi-planet Systems, Astrophys. J., 784, 45, 2014. [NASA ADS]
  • [54]Saar, S.H., and A. Brandenburg, A new look at dynamo cycle amplitudes, Astron. Nachr., 323, 357, 2002. [NASA ADS]
  • [55]Salabert, D., C. Régulo, J. Ballot, R.A. García, and S. Mathur, About the p-mode frequency shifts in HD49933, A&A, 530, A127, 2011. [NASA ADS]
  • [56]Savanov, I.S., Activity cycles of M dwarfs, Astron. Rep., 56, 716, 2012.
  • [57]Torrence, C., and G.P. Compo, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61, 1998. [NASA ADS]
  • [58]Torres, G., F. Fressin, N.M. Batalha, W.J. Borucki, T.M. Brown, et al., Modeling Kepler transit light curves as false positives: rejection of blend scenarios for Kepler-9, and validation of Kepler-9 d, a super-earth-size planet in a multiple system, Astrophys. J., 727, 24, 2011. [NASA ADS]
  • [59]Weber, M.A., Y. Fan, and M.S. Miesch, A theory on the convective origins of active longitudes on solar-like stars, Astrophys. J., 770, 149, 2013. [NASA ADS]
  • [60]Wilson, O.C., Chromospheric variations in main-sequence stars, Astrophys. J., 226, 379, 1978. [NASA ADS]
  文献评价指标  
  下载次数:62次 浏览次数:31次