期刊论文详细信息
EPJ Photovoltaics
Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC
and Fabrice Goubard1  Thanh-Tuan Bui1 
[1] Laboratoire de Physicochimie des Polymères et des Interfaces,Université de Cergy-Pontoise, 5mail Gay Lussac, Neuville-sur-Oise,95031Cergy-Pontoise Cedex, France
Others  :  808626
DOI  :  doi:10.1051/epjpv/2013024
PDF
【 摘 要 】

Issue from thin-film technologies, dye-sensitized solar cells have become one of the mostpromising technologies in the field of renewable energies. Their success is not only dueto their low weight, the possibility of making large flexible surfaces, but also to theirphotovoltaic efficiency which are found to be more and more significant(>12% with a liquid electrolyte, >7%with a solid organic hole conductor). This short review highlights recent advances in thecharacteristics and use of low-molecular-weight glass-forming organic materials as holetransporters in all solid-state dye-sensitized solar cells. These materials must featurespecific physical and chemical properties that will ensure both the operation of aphotovoltaic cell and the easy implementation. This review is an english extended versionbased on our recent article published in Matériaux & Techniques101, 102 (2013).

【 授权许可】

   
© Bui and Goubard, published by EDP Sciences, 2013

【 预 览 】
附件列表
Files Size Format View
20140708172648883.pdf 482KB PDF download
Fig. 4 26KB Image download
Fig. 3 54KB Image download
Fig. 2 27KB Image download
Fig. 1 27KB Image download
【 图 表 】

Fig. 1

Fig. 2

Fig. 3

Fig. 4

【 参考文献 】
  • [1]D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 25, 676 (1954)
  • [2]J. Bisquert, Chem. Phys. Chem. 12, 1633 (2011)
  • [3]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010) [PubMed]
  • [4]M. Grätzel, Inorg. Chem. 44, 6841 (2005) [PubMed]
  • [5]B. O’Regan, M. Grätzel, Nature 353, 737 (1991)
  • [6]M. Grätzel, Acc. Chem. Res. 42, 1788 (2009) [PubMed]
  • [7]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Jpn J. Appl. Phys. 45, L638 (2006)
  • [8]A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011) [PubMed]
  • [9]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt.: Res. Appl. 20, 606 (2012)
  • [10]J.B. Baxter, J. Vac. Sci. Technol. A 30, 020801 (2012)
  • [11]S.M. Zakeeruddin, M. Grätzel, Adv. Funct. Mater. 19, 2187 (2009)
  • [12]L.M. Peter, J. Phys. Chem. Lett. 2, 1861 (2011)
  • [13]K. Tennakone, G.R.R.A. Kumara, A.R. Kumarasinghe, K.G.U. Wijayantha, P.M. Sirimanne, Semicond. Sci. Technol. 10, 1689 (1995)
  • [14]I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, Nature 485, 486 (2012) [PubMed]
  • [15]M. Gorlov, L. Kloo, Dalton Trans. 20, 2655 (2008) [PubMed]
  • [16]W.S. Chi, J.K. Koh, S.H. Ahn, J.-S. Shin, H. Ahn, D.Y. Ryu, J.H. Kim, Electrochem. Commun. 13, 1349 (2011)
  • [17]G. Wang, L. Wang, S. Zhuo, S. Fang, Y. Lin, Chem. Commun. 47, 2700 (2011)
  • [18]J.K. Koh, J. Kim, B. Kim, J.H. Kim, E. Kim, Adv. Mater. 23, 1641 (2011) [PubMed]
  • [19]J. Kim, J.K. Koh, B. Kim, S.H. Ahn, H. Ahn, D.Y. Ryu, J.H. Kim, E. Kim, Adv. Funct. Mater. 21, 4633 (2011)
  • [20]W. Zhang, R. Zhu, F. Li, Q. Wang, B. Liu, J. Phys. Chem. C 115, 7038 (2011)
  • [21]W. Zhang, Y. Cheng, X. Yin, B. Liu, Macromol. Chem. Phys. 212, 15 (2011)
  • [22]L. Yang, U.B. Cappel, E.L. Unger, M. Karlsson, K.M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, E.M.J. Johansson, Phys. Chem. Chem. Phys. 14, 779 (2012) [PubMed]
  • [23]X. Liu, Y. Cheng, L. Wang, L. Cai, B. Liu, Phys. Chem. Chem. Phys. 14, 7098 (2012)
  • [24]I.Y. Song, S.-H. Park, J. Lim, Y.S. Kwon, T. Park, Chem. Commun. 47, 10395 (2011)
  • [25]B. Kim, J.K. Koh, J. Kim, W.S. Chi, J.H. Kim, E. Kim, ChemSusChem. 5, 2173 (2012) [PubMed]
  • [26]X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, S. Ramakrishna, Adv. Mater. 22, E150 (2010) [PubMed]
  • [27]H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2, 591 (2012)
  • [28]L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012) [PubMed]
  • [29]M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012) [PubMed]
  • [30]J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H.-W. Schmidt, D. Haarer, Synth. Met. 89, 215 (1997)
  • [31]G.K.R. Senadeera, P.V.V. Jayaweera, V.P.S. Perera, K. Tennakone, Sol. Energy Mater. Sol. Cells 73, 103 (2002)
  • [32]T. Minakata, I. Nagoya, M. Ozaki, J. Appl. Phys. 69, 7354 (1991)
  • [33]T. Minakata, H. Imai, M. Ozaki, K. Saco, J. Appl. Phys. 72, 5220 (1992)
  • [34]J. Salbeck, N. Yu, J. Bauer, F. Weissortel, H. Bestgen, Synth. Met. 91, 209 (1997)
  • [35]U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 395, 583 (1998)
  • [36]R. Pudzich, T. Fuhrmann-Lieker, J. Salbeck, Adv. Polym. Sci. 199, 83 (2006)
  • [37]J. Burschka, A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 133, 18042 (2011) [PubMed]
  • [38]J. Krüger, R. Plass, L. Cevey, M. Piccirelli, M. Grätzel, U. Bach, Appl. Phys. Lett. 79, 2085 (2001)
  • [39]H.J. Snaith, M. Grätzel, Appl. Phys. Lett. 89, 262114 (2006)
  • [40]G. Boschloo, L. Haggman, A. Hagfeldt, J. Phys. Chem. B 110, 13144 (2006) [PubMed]
  • [41]H.J. Snaith, M. Grätzel, Phys. Rev. Lett. 98, 177402 (2007)
  • [42]K. Kakiage, T. Tsukahara, T. Kyomen, M. Unno, M. Hanaya, Chem. Lett. 41, 895 (2012)
  • [43]H.J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, M. Grätzel, Nanotechnology 19, 424003 (2008)
  • [44]I.-K. Ding, N. Tetreault, J. Brillet, B.E. Hardin, E.H. Smith, S.J. Rosenthal, F. Sauvage, M. Grätzel, M.D. McGehee, Adv. Funct. Mater. 19, 2431 (2009)
  • [45]I.K. Ding, J. Melas-Kyriazi, N.-L. Cevey-Ha, K.G. Chittibabu, S.M. Zakeeruddin, M. Grätzel, M.D. McGehee, Org. Electron. 11, 1217 (2010)
  • [46]H. Melhem, P. Simon, L. Beouch, F. Goubard, M. Boucharef, C. Di Bin, Y. Leconte, B. Ratier, N. Herlin-Boime, J. Bouclé, Adv. Energy Mater. 1, 908 (2011)
  • [47]C.-Y. Hsu, Y.-C. Chen, R.Y.-Y. Lin, K.-C. Ho, J.T. Lin, Phys. Chem. Chem. Phys. 14, 14099 (2012) [PubMed]
  • [48]J.E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S.D. Ogier, K. Carr, M. Grätzel, J.R. Durrant, Adv. Funct. Mater. 16, 1832 (2006)
  • [49]Y. Zhao, W. Chen, J. Zhai, X. Sheng, Q. He, T. Wei, F. Bai, L. Jiang, D. Zhu, Chem. Phys. Lett. 445, 259 (2007)
  • [50]R. Aich, F. Tran-Van, F. Goubard, L. Beouch, A. Michaleviciute, J.V. Grazulevicius, B. Ratier, C. Chevrot, Thin Solid Films 516, 7260 (2008)
  • [51]H.J. Snaith, S.M. Zakeeruddin, Q. Wang, P. Pechy, M. Grätzel, Nano Lett. 6, 2000 (2006) [PubMed]
  • [52]M. Juozapavicius, B.C. O’Regan, A.Y. Anderson, J.V. Grazulevicius, V. Mimaite, Org. Electron. 13, 23 (2012)
  • [53]S. Mathew, K.R. Haridas, Bull. Mater. Sci. 35, 123 (2012)
  • [54]T. Leijtens, I.K. Ding, T. Giovenzana, J.T. Bloking, M.D. McGehee, A. Sellinger, ACS Nano 6, 1455 (2012) [PubMed]
  • [55]A. Tomkeviciene, G. Puckyte, J.V. Grazulevicius, M. Degbia, F. Tran-Van, B. Schmaltz, V. Jankauskas, J. Bouclé, Synth. Met. 162, 1997 (2012)
  • [56]E.L. Unger, A. Morandeira, M. Persson, B. Zietz, E. Ripaud, P. Leriche, J. Roncali, A. Hagfeldt, G. Boschloo, Phys. Chem. Chem. Phys. 13, 20172 (2011) [PubMed]
  • [57]N. Metri, X. Sallenave, C. Plesse, L. Beouch, P.-H. Aubert, F. Goubard, C. Chevrot, G. Sini, J. Phys. Chem. C 116, 3765 (2012)
  • [58]F. Goubard, R. Aîch, F. Tran-Van, A. Michaleviciute, F. Wünsch, M. Kunst, J. Grazulevicius, B. Ratier, C. Chevrot, Proc. Estonian Acad. Sci. Eng. 12, 96 (2006)
  • [59]N. Metri, X. Sallenave, L. Beouch, C. Plesse, F. Goubard, C. Chevrot, Tetrahedron Lett. 51, 6673 (2010)
  • [60]Z.-S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, K. Hara, Chem. Mater. 20, 3993 (2008)
  文献评价指标  
  下载次数:30次 浏览次数:5次