期刊论文详细信息
Journal of Space Weather and Space Climate
Model of traveling ionospheric disturbances
Vasiliy L. Dorohov1  Vladimir N. Fedorenko1  Oleg F. Tyrnov1  Yury P. Fedorenko1 
[1] Kharkiv V. N. Karazin National University,Kharkiv,Ukraine
关键词: magnetic activity;    sunspot number;    disturbance occurrence;    transionospheric sounding;    magnetospheric cusp;    energetic proton precipitation;    volcano explosive eruption;    nuclear explosion;    horizontal velocity of extremum;    multiscale traveling ionospheric disturbances;    semi-empirical model;   
Others  :  800670
DOI  :  doi:10.1051/swsc/2013052
 received in 2011-09-19, accepted in 2013-09-05,  发布年份 2013
PDF
【 摘 要 】

A multiscale semi-empirical model of traveling ionospheric disturbances (TIDs) is developed. The model is based on the following assumptions: (1) TIDs are generated by acoustic-gravity waves (AGWs) and propagate as pressure waves; (2) time intervals between adjacent extrema of atmospheric pressure oscillations in a disturbance source are constant; (3) the pressure extrema propagate from the source up to ~14 000 km at a constant horizontal velocity; (4) the velocity of each extremum is determined only by its number in a TID train. The model was validated using literature data on disturbances generated by about 20 surface and high-altitude nuclear explosions, two volcano explosions, one earthquake and by energetic proton precipitation events in the magnetospheric cusp of the northern hemisphere. Model tests using literature data show that the spatial and temporal TID periods may be predicted with an accuracy of 12%. Adequacy of the model was also confirmed by our observations collected using transionospheric sounding. The following TID parameters: amplitudes, horizontal spatial periods, and a TID front inclination angle in a vertical plane are increasing as the distance between an AGW and the excitation source is increasing. Diurnal and seasonal variability of the TID occurrence, defined as ratio of TID events to the total number of observations for the corresponding period, is not observed. However, the TID occurrence was growing from ~50% in 1987 to ~98% in 2010. The results of other studies asserting that the TID occurrence does not depend on the number of sunspots and magnetic activity are confirmed. The TID occurrence has doubled over the period from 1987 to 2010 indicating increasing solar activity which is not associated with sunspot numbers. The dynamics of spatial horizontal periods was studied in a range of 150–35 000 km.

【 授权许可】

   
© Y.P. Fedorenko et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707201723207.pdf 5196KB PDF download
Fig. 21. 67KB Image download
Fig. 20b. 73KB Image download
Fig. 20a. 67KB Image download
Fig. 19. 98KB Image download
Fig. 18. 89KB Image download
Fig. 17. 84KB Image download
Fig. 16. 37KB Image download
Fig. 15. 42KB Image download
Fig. 14. 83KB Image download
Fig. 13. 82KB Image download
Fig. 12. 35KB Image download
Fig. 11. 51KB Image download
Fig. 10. 30KB Image download
Fig. 9. 33KB Image download
Fig. 8. 30KB Image download
Fig. 7. 76KB Image download
Fig. 6. 38KB Image download
Fig. 5. 103KB Image download
Fig. 4. 67KB Image download
Fig. 3. 75KB Image download
Fig. 2. 54KB Image download
Fig. 1. 71KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20a.

Fig. 20b.

Fig. 21.

【 参考文献 】
  • [1]Adushkin, V.V., and K.I. Gorelyi, The response of the ionospheric F-region to atmospheric nuclear explosions, Dynamic Processes in Geospheres, Geophysics of Strong Disturbances. Collected Scientific Transactions (in Russian), Moscow, 239–248, 1994.
  • [2]Afraimovich, E.L., S.V. Voyenkov, K.G. Ratovsky, and P.V. Tatarinov, GPS-detection of the single internal gravitational waves generated during powerful magnetic storms. In: Trudy 21 vserossiiskoi nauchnoi konferentsi po rasprostraneniyu radiovoln (Proc. 21th All-Russia Sci. Conference on Radiowave Propagation), Ioshkar Ola, 1, 124–128, 2005.
  • [3]Albee, P.R., and D.P. Kanellakos, A spatial model of the F-region ionospheric traveling disturbance following a low-altitude nuclear explosion, J. Geophys. Res., 73 (3), 1039–1053, 1968.
  • [4]Breitling, W.J., and R.A. Kupferman, Traveling ionospheric disturbances associated with nuclear detonations, J. Geophys. Res., 72 (1), 307–315, 1967.
  • [5]Bristow, W.A., R.A. Greenwald, and J.C. Samson, Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF radar, J. Geophys. Res., 99 (A1), 319–331, 1994.
  • [6]Bullough, R.K., and P.J. Caudrey, Solitons, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
  • [7]Cole, J.D., and C. Greifinger, Acoustic-gravity waves from an energy source at the ground in the isothermal atmosphere, J. Geophys. Res., 74 (14), 3693–3703, 1969.
  • [8]Deminov, M.G., A.T. Karpachev, V.V. Afonin, and J. Shmilauer, Change of a position of the main ionospheric trough depending on a longitude and geomagnetic activity, Geomagn. Aeron., 32 (5), 185–188, 1992.
  • [9]Dorohov, V.L., V.G. Somov, V.N. Fedorenko, and Yu.P. Fedorenko, Diagnostics of medium scale traveling ionospheric disturbances using radio sounding of the ionosphere by signals from low-orbiting navigation satellites, Visn. KharkivKarazin Nat. Univ., Ser.: Radiofiz. Elektron. (in Russian), 2 (646), 224–229, 2004.
  • [10]Evans, J.V., J.M. Holt, and R.H. Wand, A differential doppler study of traveling ionospheric disturbances from Millstone Hill, Radio Sci., 18 (3), 435–451, 1983.
  • [11]Fedorenko, V.N., Yu.P. Fedorenko, and I.I. Shagimuratov, Results of the ionosphere study by means of diversity reception of radio signals of low-orbiting navigation satellites, Geomagn. Aeron., 37 (3), 346–349, 1997.
  • [12]Fedorenko, Yu.P., O.F. Tyrnov, and V.N. Fedorenko, Parametres of empirical model of traveling ionospheric disturbances, Elektromagnitnye volny i elektronnye sistemy, 13, 21–46, 2008.
  • [13]Fedorenko, Yu.P., O.F. Tyrnov, and V.N. Fedorenko, Parameters of traveling ionospheric disturbances estimated from satellite beacon observations in low Earth orbit, Geomagn. Aeron., 50, 489–503, 2010a.
  • [14]Fedorenko, Yu.P., V.N. Fedorenko, and V.L. Dorohov, Front inclination in a vertical plane of Medium-Scale Traveling Ionospheric Disturbances and an effective thickness of a layer of their detection, Visn. Kharkiv Karazin Nat. Univ., Ser.: Radiofiz. Elektron., (in Russian), 17 (927), 109–120, 2010b.
  • [15]Fedorenko, Yu.P., V.N. Fedorenko, and V.N. Lysenko, Parameters of the medium-scale traveling ionospheric disturbances model deduced from measurements, Geomagn. Aeron., 51 (1), 88–104, 2011.
  • [16]Fedorenko, Yu.P., V.N. Fedorenko, and V.L. Dorohov, Diagnostics of parametres of large-scale traveling ionospheric disturbances with the help radioscopy ionosphere by signals low-orbital navigating satellites, Visn. Kharkiv Karazin Nat. Univ., Ser.: Radiofiz. Elektron., (in Russian), 20 (1010), 97–112, 2012.
  • [17]Francis, S.H., A theory of medium-scale traveling ionospheric disturbances, J. Geophys. Res., 79 (34), 5245–5260, 1974.
  • [18]Francis, S.H., Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys., 37 (6–7), 1011–1054, 1975.
  • [19]Gossard, E.E., and W.H. Hooke, Waves in the Atmosphere, Elsevier, Amsterdam, Netherlands, 456 p., 1975.
  • [20]Halperin, Yu.I., L.D. Sivtseva, V.M. Filippov, and V.L. Khalipov, The Sub-Auroral Upper Ionosphere, Nauka, Novosybyrsk (in Russian), 191, 1990.
  • [21]Heisler, L.H., Anomalies in ionosonde records due to traveling ionospheric disturbances, Aust. J. Phis., 11, 79–90, 1958.
  • [22]Hocke, K., and K. Schlegel, A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, 1996.
  • [23]Igarashi, K., S. Kainuma, I. Nishimuta, S. Okamoto, H. Kuroiwa, T. Tanaka, and T. Ogawa, Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991, J. Atmos. Terr. Phys., 56 (9), 1227–1234, 1994.
  • [24]Iyer, K.N., Effect of traveling ionospheric disturbances on HF phase-path measurements, Indian J. Radio Space Phys., 12, 47–49, 1983.
  • [25]Kanellakos, D.P., Response of the ionosphere to the passage of acoustic-gravity waves generated be low-altitude nuclear explosions, J. Geophys. Res., 72 (17), 4559–4576, 1967.
  • [26]Karpachev, A.T., N. Beloff, T.D. Carozzi, P.F. Denisenko, T.J.T. Karhunem, and M. Lester, Detection of large scale TIDs associated with the dayside cusp using SuperDARN Data, J. Atmos. Sol. Terr. Phys., 72 (9–10), 653–661, 2010.
  • [27]Köhnlein, W., and W.J. Raitt, Position of the mid-latitude trough in the topside ionosphere as deduced from ESPO 4 observations, Planet. Space Sci., 25, 600–602, 1977.
  • [28]Kotake, N., Y. Otsuka, T. Ogawa, T. Tsugawa, and A. Saito, Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59, 95–102, 2007.
  • [29]Kunitsyn, W.E., S.N. Suraev, and R.R. Akhmedov, Modeling propagation of acoustic gravity waves in the atmosphere for different surface sources, Vestn. Mosk. Univ., Sert. 3. Fiz. Astron., 2, 59–63, 2007.
  • [30]Liu, C.H., and K.C. Yeh, Exciting of acoustic-gravity waves in an isothermal atmosphere, Tellus, 23, 150–163, 1971.
  • [31]Lomax, J.B., and D.L. Nielson, Observation of acoustic-gravity wave effects showing geomagnetic field dependence, J. Atmos. Terr. Phys., 30, 1033–1050, 1968.
  • [32]Lonngren, K., and A. Scott, Soliton in Actions, Academic Press, New York, San Francisco-London, 1978.
  • [33]Munro, G.H., Short-period changes in the F region of the ionosphere, Nature, 162, 886–887, 1948.
  • [34]Obayashi, T., Widespread ionospheric disturbances due to nuclear explosions during October 1961, Nature, 196 (4849), 24–27, 1962.
  • [35]Ogawa, T., K. Igarashi, K. Aikyo, and H. Maeno, Satellite observation of medium scale traveling ionospheric disturbances over Syowa Station, Proc NIPR Symposium Upper Atmosphere, 1, 192–198, 1988.
  • [36]Otsuka, Y., K. Suzuki, S. Nakagawa, M. Nishioka, K. Shiokawa, and T. Tsugawa, GPS observations of medium-scale traveling ionospheric disturbances over Europe, Ann. Geophys., 31, 163–172, 2013.
  • [37]Roberts, D.H., J.A. Klobuchar, P.F. Fougere, and D.H. Hendrickson, A large-amplitude traveling ionospheric disturbance produced by the May 18, 1980, explosion of Mount St. Helens, J. Geophys. Res., 87, 6291–6301, 1982a.
  • [38]Roberts, D.H., A.E.E. Rogers, B.R. Allen, C.L. Bennett, B.F. Bukker, P.E. Greenfield, C.R. Lawrence, and T.A. Clark, Radio interferometric detection of a traveling ionospheric disturbance excited by Explosion of Mount St. Helens, J. Geophys. Res., 87 (A8), 6302–6306, 1982b.
  • [39]Row, R.V., Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake, J. Geophys. Res., 72 (5), 1599–1610, 1967.
  • [40]RTO Technical Report TR-IST-051, Characterising the Ionosphere. Final Report of Task Group IST-051, Published January 2009. 1.1.1.2 (Hawlitschka Stefan). 1.3.8 (Prikryl Paul).
  • [41]Senior, A., M.J. Kosch, T.K. Yeoman, M.T. Rietveld, and I.W. McCrea, Effects of high latitude atmospheric gravity wave disturbances on artificial HF radar backscatter, Ann. Geophys., 24, 2347–2361, 2006.
  • [42]Shashunkina, V.M., Ionospheric effect of the sudden beginning of a magnetic storm on July, 15th, 1959, Geomagn. Aeron. (in Russian), 6 (1), 146–149, 1966.
  • [43]Shashunkina, V.M., Study of planetary ionospheric effect of the sudden beginning of a magnetic storm, Ionosf. Issled. (in Russian), 16, 91–96, 1968a.
  • [44]Shashunkina, V.M., Variations of ionospheric parametres during effect SC depending on solar and magnetic activity according to the Lindau-data, Geomagn. Aeron. (in Russian), 8 (2), 352–354, 1968b.
  • [45]Shashunkina, V.M., Results of study of ionospheric effect of the sudden beginning of a magnetic storm, Ionosf. Issled. (in Russian), 20, 154–165, 1972.
  • [46]Song, Q., F. Ding, W.X. Wan, L.B. Liu, and B.Q. Ning, Monitoring nighttime medium-scale traveling ionospheric disturbances using the GPS network over North America, J. Geophys., 54, 162–168, 2011.
  • [47]Taran, V.I., Yu.I. Pod’yachii, V.I. Golovin, V.I. Vashchenko, and I.D. Arkad’ev, Traveling ionospheric disturbances detected using the incoherent scatter method, Ionos. Issled., 27, 102–110, 1979.
  • [48]Taran, V.I., Yu.I. Pod’yachii, A.N. Smirnov, and L.J. Gerstein, Disturbances of the ionosphere after a ground level burst on supervision by a method of incoherent scatter, Izvest. akadem. nauk SSSR, Phisica Zemly (in Russian), 11, 75–79, 1985.
  • [49]Tsugawa, T., N. Kotake, Y. Otsuka, and A. Saito, Medium-scale traveling ionospheric disturbances observed by GPS receiver network in Japan, A short review GPS Solutions, 11 (2), 139–144, DOI: 10.1007/s10291-006-0045-5 Key: citeulike:1207528, 2007a.
  • [50]Tsugawa, T., Y. Otsuka, A.J. Coster, and A. Saito, New characteristics of medium-scale traveling ionospheric disturbances detected with dense wide-coverage TEC maps over North America, Geophys.Res. Lett., 34, 22–101, DOI: 10.1029/2007GL031663, 2007b.
  • [51]Tyrnov, O.F., Yu.P. Fedorenko, and L.F. Chernogor, Studying wave-like disturbances of electron density using radio sounding of the ionosphere by coherent signals of navigation satellites, Usp. Sovrem. Radioelektron., 1, 36–80, 2005.
  • [52]Vadas, S.L., and G. Crowley, Sources of the traveling ionospheric disturbaces observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007, J. Geophys. Res., 115 (A07324), 1–24, 2010.
  • [53]Vlasov, A., K. Kauristie, M. van de Kamp, J.-P. Luntama, and A. Pogoreltsev, A study of traveling ionospheric disturbances and atmospheric gravity waves using EISCAT Svalbard Radar IPY-data, Ann. Geophys., 29, 2101–2116, 2011.
  • [54]Wexler, H., and W.A. Hass, Global atmospheric pressure effects of the October 30, 1961, explosion, J. Geophys. Res., 67 (10), 3875–3879, 1962.
  • [55]Yakovets, A.F., V.V. Vodyannikov, G.I. Gordienko, J.F. Ashkaliev, Yu.G. Litvinov, and S.B. Akasov, The response of a night middle-latitude ionosphere to passage of an atmospheric gravitational wave, Geomagn. Aeron., 48 (4), 534–541, 2008.
  • [56]Yeh, K.C., and C.H. Liu, Acoustic-gravity waves in the upper atmosphere, Rev. Geophys. Space Phys., 12 (2), 193–616, 1974.
  文献评价指标  
  下载次数:391次 浏览次数:15次