期刊论文详细信息
Journal of Space Weather and Space Climate
The 1859 space weather event revisited: limits of extreme activity
William F. Dietrich1  Edward W. Cliver2 
[1] Praxis, Inc.,Alexandria,VA 22303,USA;Space Vehicles Directorate, Air Force Research Laboratory, Sunspot,NM 88349,USA
关键词: historical records;    magnetic storms;    solar activity;    extreme events;    space weather;   
Others  :  800662
DOI  :  doi:10.1051/swsc/2013053
 received in 2013-04-04, accepted in 2013-09-17,  发布年份 2013
PDF
【 摘 要 】

The solar flare on 1 September 1859 and its associated geomagnetic storm remain the standard for an extreme solar-terrestrial event. The most recent estimates of the flare soft X-ray (SXR) peak intensity and Dst magnetic storm index for this event are: SXR class = X45 (±5) (vs. X35 (±5) for the 4 November 2003 flare) and minimum Dst = −900 (+50, −150) nT (vs. −825 to −900 nT for the great storm of May 1921). We have no direct evidence of an associated solar energetic proton (SEP) event but a correlation between >30 MeV SEP fluence (F30) and flare size based on modern data yields a best guess F30 value of ~1.1 × 1010 pr cm−2 (with the ±1σ uncertainty spanning a range from ~109–1011 pr cm−2) for a composite (multi-flare plus shock) 1859 event. This value is approximately twice that of estimates/measurements – ranging from ~5–7 × 109 pr cm−2 – for the largest SEP episodes (July 1959, November 1960, August 1972) in the modern era.

【 授权许可】

   
© E.W. Cliver et al., Published by EDP Sciences 2013

【 预 览 】
附件列表
Files Size Format View
20140707201303405.pdf 1558KB PDF download
Fig. 16. 93KB Image download
Fig. 15. 32KB Image download
Fig. 14. 33KB Image download
Fig. 13. 33KB Image download
Fig. 12. 32KB Image download
Fig. 11. 92KB Image download
Fig. 10. 29KB Image download
Fig. 9. 31KB Image download
Fig. 8. 37KB Image download
Fig. 7. 50KB Image download
Fig. 6. 37KB Image download
Fig. 5. 59KB Image download
Fig. 4. 12KB Image download
Fig. 3. 27KB Image download
Fig. 2. 47KB Image download
Fig. 1. 55KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

【 参考文献 】
  • [1]Akasofu, S.-I., and Y. Kamide, Comment on “The extreme magnetic storm of 1–2 September 1859” by B.T. Tsurutani, W.D. Gonzalez, G.S. Lakhina, and S. Alex, J. Geophys. Res., 110, A09226, DOI: 10.1029/2005JA011005, 2005.
  • [2]Allen, J.A., L. Frank, H. Sauer, and P. Reiff, Effects of the March 1989 solar activity, Eos, Trans. Amer. Geophys. Union, 70, 1479, 1486–1488, 1989.
  • [3]Angenheister, G., and C.J. Westland, The magnetic storm of May 13–14, 1921: observations at Samoa Observatory, New Zealand J. Sci. Tech., 4, 201–202, 1921.
  • [4]Aulanier, G., P. Démoulin, C.J. Schrijver, M. Janvier, E. Pariat, and B. Schmieder, The standard flare model in three dimensions II. Upper limit on solar flare energy, A&A, 549, A66, DOI: 10.1051/0004-6361/201220406, 2013. [NASA ADS]
  • [5]Bartels, J., Solar eruptions and their ionospheric effects – a classical observation and its new interpretation, Terr. Mag. Atmos. Elect., 42, 235–239, 1937.
  • [6]Beer, J., K. McCracken, and R. von Steiger, Cosmogenic Radionuclides: Theory and in the Terrestrial and Space Environments, Berlin, Springer, 2012.
  • [7]Boteler, D.H., The super storms of August/September 1859 and their effects on the telegraph system, Adv. Space Res., 38, 159–172, 2006.
  • [8]Botley, C.M., Some great tropical aurorae, J. Brit. Astron. Assoc., 67, 188–191, 1957.
  • [9]Brodrick, D., S. Tingay, and M. Wieringa, X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background, J. Geophys. Res., 110, A09S36, DOI: 10.1029/2004JA010960, 2005.
  • [10]Brueckner, G.E., R.A. Howard, M.J. Koomen, C.M. Korendyke, and D.J. Michels, et al., The Large Angle Spectroscopic Coronagraph (LASCO), Solar Phys., 162, 357–402, 1995. [NASA ADS]
  • [11]Burton, R.K., R.L. Mcpherron, and C.T. Russell, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204–4214, 1975.
  • [12]Cane, H.V., D.V. Reames, and T.T. von Rosenvinge, The role of interplanetary shocks in the longitude distribution of solar energetic particles, J. Geophys. Res., 93, 9555–9567, 1988.
  • [13]Carrington, R.C., Description of a singular appearance seen in the Sun on September 1, 1859, Mon. Not. Roy. Astron. Soc., 20, 13–14, 1860.
  • [14]Challis, J., Observations at the Observatory at Cambridge, Greenwich Magnetical and Meteorological Observations, 226–227, 1847.
  • [15]Clarke, E., C. Rodger, M. Clilverd, T. Humphries, O. Baillie, and A. Thomson, An estimation of the Carrington flare magnitude from solar flare effects (sfe) in the geomagnetic records 2010.Royal Astron. Soc. National Astron. Meeting, 12–16 April, 2010 University of Glasgow, UK.
  • [16]Cliver, E.W., The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10, Astrophys. J., 639, 1206–1217, 2006a.
  • [17]Cliver, E.W., The 1859 space weather event: then and now, Adv. Space Res., 38, 119–129, 2006b.
  • [18]Cliver, E.W., and N.U. Crooker, A seasonal dependence for the geoeffectiveness of eruptive solar events, Solar Phys., 145, 347–357, 1993.
  • [19]Cliver, E.W., and N.C. Keer, Richard Christopher Carrington: briefly among the great scientists of his time, Solar Phys., 280, 1–31, 2012.
  • [20]Cliver, E.W., and L. Svalgaard, The 1859 solar-terrestrial disturbance and the current limits of extreme space weather activity, Solar Phys., 224, 407–422, 2004. [NASA ADS]
  • [21]Cliver, E.W., S.W. Kahler, M.A. Shea, and D.F. Smart, Injection onsets of 2 GeV protons, 1 MeV electrons, and 100 keV electrons in solar cosmic ray flares, Astrophys. J., 260, 362–370, 1982. [NASA ADS]
  • [22]Cliver, E.W., J. Feynman, and H.B. Garrett, An estimate of the maximum speed of the solar wind, 1938–1989, J. Geophys. Res., 95, 17103–17112, 1990.
  • [23]Cliver, E.W, K.S. Balasubramaniam, N.V. Nitta, and X. Li, Great geomagnetic storm of 9 November 1991: association with a disappearing solar filament, J. Geophys. Res., 114, A00A20, DOI: 10.1029/2008JA013232, 2009.
  • [24]Cliver, E.W., A.G. Ling, A. Belov, and S. Yashiro, Size distributions of solar flares and solar energetic particle events, Astrophys. J. Lett., 756, L29, DOI: 10.1088/2041-8205/756/2/L29, 2012.
  • [25]Cliver, E.W., A.J. Tylka, W.F. Dietrich, and A.G. Ling, On a solar origin for the cosmogenic nuclide event of 775 AD, Astrophys. J. Lett., Submitted, 2013.
  • [26]Douglass, A.E., The aurora of May 14, 1921, Science, 54, 14, 1921.
  • [27]Emslie, G., B.R. Dennis, A.Y. Shih, P.C. Chamberlin, and R.A. Mewaldt, et al., Global energetics of thirty-eight large solar eruptive events, Astrophys. J., 759, 71, DOI: 10.1088/0004-637X/759/1/71, 2012. [NASA ADS]
  • [28]Glaisher, J., Observations at the observatory at Cambridge, Greenwich Magnetical and Meteorological Observations, 222–223, 1847.
  • [29]Gonzalez, W.D., E. Echer, A.L. Clúa de Gonzalez, B.T. Tsurutani, and G.S. Lakhina, Extreme geomagnetic storms recent Gleissberg cycles and space era-super intense storms, J. Atmos. Sol.-Terr. Phys., 73, 1447–1453, 2011.
  • [30]Gopalswamy, N., L. Barbieri, E.W. Cliver, G. Lu, S.P. Plunkett, and R.M. Skoug, Introduction to violent Sun-Earth connection events of October–November 2003, J. Geophys. Res., 110, A09S15, DOI: 10.1029/2004JA010958, 2005a.
  • [31]Gopalswamy, N., S. Yashiro, Y. Liu, G. Michalek, A. Vourlidas, M.L. Kaiser, and R.A. Howard, Coronal mass ejections and other extreme characteristics of the 2003 October–November solar eruptions, J. Geophys. Res., 110, A09S15, DOI: 10.1029/2004JA010958, 2005b.
  • [32]Green, J.L., and S. Boardsen, Duration and extent of the great auroral storm of 1859, Adv. Space Res., 38, 130–135, 2006.
  • [33]Hapgood, M.A., Towards a scientific understanding of the risk from extreme space weather, Adv. Space Res., 47, 2059–2072, 2011.
  • [34]Hapgood, M.A., Prepare for the coming space weather storm, Nature, 484, 311–313, DOI: 10.1038/484311a, 2012.
  • [35]Heikkilä, U., J. Beer, and J. Feichter, Meridional transport and deposition of atmospheric 10Be, Atmos. Chem. Phys., 9, 515–527, 2009.
  • [36]Hodgson, R, On a curious appearance seen in the Sun, Mon. Not. Roy. Astron. Soc., 20, 15, 1860.
  • [37]Jones, H.S., Royal Greenwich Observatory Sunspot and Geomagnetic Storm Data, London, Her Majesty’s Stationery Office, 1955.
  • [38]Kallenrode, M.-B., and E.W. Cliver, Rogue SEP events: modeling, in: Proc. 27th Int. Cosmic Ray Conf., 3318–3321, 2001.
  • [39]Kane, S.R., K. Hurley, J.M. McTiernan, M. Sommer, M. Boer, and M. Niel, Energy release and dissipation during giant solar flares, Astrophys. J. Lett., 446, L47–50, 1995.
  • [40]Kappenman, J.G., Great geomagnetic storms and impulsive geomagnetic field disturbance events – an analysis of observational evidence including the great storm of May 1921, Adv. Space Res., 38, 188–199, 2006.
  • [41]Kiplinger, A.L., and H.A. Garcia, Soft X-ray parameters of the great flares of active region 486, Bull. Am. Astron. Soc., 36, 739, 2004.
  • [42]Kretzschmar, M., The Sun as a star: observations of white-light flares, Astron. Astrophys., 530, A84, DOI: 10.1051/0004-6361/201015930, 2011. [NASA ADS]
  • [43]Kretzschmar, M., T. Dudok de Wit, W. Schmutz, S. Mekaoui, J.-F. Hochedez, and S. Dewitte, The effect of flares on total solar irradiance, Nature Physics, 6, 690, DOI: 10.1038/NPHYS1741, 2010. [NASA ADS]
  • [44]Lampland, C.O., Observations of the aurora at the Lowell observatory 14 May, 1921, Science, 54, 185–187, 1921.
  • [45]Lario, D., and R.B. Decker, The energetic storm particle event of October 20, 1989, Geophys. Res. Lett., 29, 1393, DOI: 10.1029/2001GL014017, 2002.
  • [46]Li, X., M. Temerin, B.T. Tsurutani, and S. Alex, Modeling the 1–2 September 1859 super magnetic storm, Adv. Space Res., 38, 273–279, 2006.
  • [47]Loomis, E., The great auroral exhibition of August 28th to September 4th 1859, Am. J. Sci. Arts, Second Series. 28, 385–408, 1859, 29, 92–97, 249–266, 386–399, 1860; 79–100, 339–361, 1860; 32, 71–84, 318-335, 1861.
  • [48]Lundstedt, H., Solar storms and topology: observed with SDO, in: Proceedings of TIEMS conference “Space Weather and Challenges for Modern Society, 22–24 October, 2012.
  • [49]Mayaud, P.N., Derivation, Meaning, and Use of Geomagnetic Indices, Geophys. Monograph Ser., vol. 22, Washington, DC, AGU, 1980.
  • [50]McCracken, K.G., G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, and M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950, J. Geophys. Res., 106, 21585–21598, 2001a. [NASA ADS]
  • [51]McCracken, K.G., G.A.M. Dreschhoff, D.F. Smart, and M.A. Shea, Solar cosmic ray events for the period 1561–1994: 2. The Gleissberg periodicity, J. Geophys. Res., 106, 21599–21609, 2001b.
  • [52]Mewaldt, R.A., C.T. Russell, C.M.S. Cohen, A.B. Galvin, R. Gomez-Herrero, A. Klassen, R.A. Leske, J. Luhmann, G.M. Mason, and T.T. von Rosenvinge, A 360° view of solar energetic particle events, including one extreme event, in: Proc. 33rd Int. Cosmic Ray Conf., 2013, in press.
  • [53]O’Brien, T.P., and R.L. McPherron, An empirical phase space analysis of ring current dynamics: solar wind control of injection and decay, J. Geophys. Res., 105, 7707–7719, 2000.
  • [54]Reedy, R.C., Solar proton fluxes since 1956, Proc. 8th Lunar Sci. Conf., 1, 825–839, 1977.
  • [55]Riley, P., On the probability of occurrence of extreme space weather events, Space Weather, 10, S02012, DOI: 10.1029/2011SW000734, 2012. [NASA ADS]
  • [56]Russell, H.N., Observations of the aurora at the Lowell Observatory 14 May, 1921, Science, 54, 184–184, 1921.
  • [57]Russell, C.T., R.A. Mewaldt, J.G. Luhmann, G.M. Mason, and T.T. von Rosenvinge, et al., The very unusual interplanetary coronal mass ejection of July 23, 2012: a blast wave mediated by solar energetic particles, Astrophys. J. Lett., 770, 38–38, 2013.
  • [58]Secchi, P., Sur les perturbations magnétiques observes à Rome le 2 Septembre 1859, Comptes Rendus, 49, 458–460, 1859.
  • [59]Schrijver, C.J., J. Beer, U. Baltensperger, E.W. Cliver, and M. Güdel, et al., Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records, J. Geophys. Res., 117, A08103, DOI: 10.1029/2012JA017706, 2012. [NASA ADS]
  • [60]Shea, M.A., and D.F. Smart, A summary of major solar proton events, Solar Phys., 127, 297–320, 1990.
  • [61]Shea, M.A., and D.F. Smart, Compendium of the eight articles on the “Carrington Event” attributed to or written by Elias Loomis in the American Journal of Science, 1859–1861, Adv. Space Res., 38, 313–385, 2006.
  • [62]Silverman, S.M., Low-latitude auroras: the great aurora of 4 February 1872, J. Atmos. Sol.-Terr. Phys., 70, 1301–1308, 2008.
  • [63]Silverman, S.M., and E.W. Cliver, Low-latitude auroras: the magnetic storm of 14–15 May 1921, J. Atmos. Sol.-Terr. Phys., 63, 523–535, 2001.
  • [64]Siscoe, G.L., N.U. Crooker, and L. Christopher, A solar cycle variation of the interplanetary magnetic field, Solar Phys., 56, 449–461, 1978.
  • [65]Siscoe, G., N.U. Crooker, and C.R. Clauer, Dst of the Carrington storm of 1859, Adv. Space Res., 38, 173–179, 2006.
  • [66]Slipher, V.M., Observations of the aurora at the Lowell observatory May 14, 1921, Science, 54, 184–185, 1921.
  • [67]Smart, D.F., M.A. Shea, and K.G. McCracken, The Carrington event: possible solar proton intensity-time profile, Adv. Space Res., 38, 215–225, 2006.
  • [68]Smart, D.F., M.A. Shea, H.E. Spence, and L. Kepko, Two groups of extremely large >30 MeV solar proton fluence events, Adv. Space Res., 37, 1734–1740, 2006. [NASA ADS]
  • [69]Steljes, J.F., H. Carmichael, and K.G. McCracken, Characteristics and fine structure of the large cosmic-ray fluctuations in November 1960, J. Geophys. Res., 66, 1363–1377, 1961.
  • [70]Stewart, B., On the great magnetic disturbance which extended from August 28 to September 7, 1859, as recorded by photography at Kew Observatory, Philos. Trans., 151, 423–430, 1861. [NASA ADS]
  • [71]Sugiura, M., Hourly values of equatorial Dst for the IGY, Ann. Int. Geophys. Year, 35, 49, 1964.
  • [72]Temerin, M., and X. Li, A new model for the prediction of Dst on the basis of the solar wind, J. Geophys. Res., 107, 1472, SMP 31-1. DOI: 10.1029/2001JA007532, 2002.
  • [73]Temerin, M., and X. Li, Dst model for 1995–2002, J. Geophys. Res., 111, A04221, DOI: 10.1029/2005JA011257, 2006.
  • [74]Thomson, N.R., C.J. Rodger, and R.L. Dowden, Ionosphere gives size of greatest solar flare, Geophys. Res. Lett., 31, L06803, DOI: 10.1029/2003GL019345, 2004.
  • [75]Thomson, N.R., C.J. Rodger, and M.A. Clilverd, Large solar flares and their ionospheric D-region enhancements, J. Geophys. Res., 110, A06306, DOI: 10.1029/2005JA011008, 2005.
  • [76]Tranquille, C., K. Hurley, and H.S. Hudson, The Ulysses catalog of solar hard X-ray flares, Solar Phys., 258, 141–166, 2009.
  • [77]Tsurutani, B.T., W.D. Gonzalez, G.S Lakhina, and S. Alex, The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108, 12–68, SSH 1-1, DOI: 10.1029/2002JA009504, 2003. [NASA ADS]
  • [78]Tsurutani, B.T., W.D. Gonzales, G.S. Lakhina, and S. Alex, Reply to comment by S.-I. Akasofu and Y. Kamide on “The extreme magnetic storm of 1–2 September 859”, J. Geophys. Res., 110, A09227, DOI: 10.1029/2005JA011121, 2005.
  • [79]Tyasto, M.I., N.G. Ptitsyna, I.S. Veselovsky, and O.S. Yakovchouk, Extremely strong geomagnetic storm of September 2–3, 1859, according to the archived data of observations at the Russian network, Geomag. Aeron., 49, 153–162, 2009.
  • [80]Tylka, A., and W. Dietrich, M., Giller, and J. Szabelski, New and comprehensive analysis of proton spectra in ground level enhanced (GLE) solar particle events. In: Proc. 31th Int. Cosmic Ray Conf., Lodź, Poland, Universal Academy Press, ICRC0273, 2009.
  • [81]Usoskin, I.G., and G.A. Kovaltsov, Occurrence of extreme solar particle events: assessment from historical proxy data, Astrophys. J., 757, 92, DOI: 10.1088/0004-637X/757/1/92, 2012. [NASA ADS]
  • [82]Vallance Jones, A., Historical review of great auroras, Can. J. Phys., 70, 479–487, 1992.
  • [83]Van Hollebeke, M.A., L.S. Ma Sung, and F.B. McDonald, The variation of solar proton energy spectra and size distribution with heliolongitude, Solar Phys., 41, 189–323, 1975.
  • [84]Vasyliunas, V., The largest imaginable geomagnetic storm, J. Atmos. Sol.-Terr. Phys., 73, 1444–1446, 2011.
  • [85]Veronig, A., M. Temmer, A. Hanslmeier, W. Otruba, and M. Messerotti, Temporal Aspects and frequency distributions of solar soft X-ray flares, Astron. Astrophys., 382, 1070–1080, 2002.
  • [86]Westland, C.J., A note upon the Aurora Australis, J. Brit. Astron. Soc., 31, 380, 1921.
  • [87]Wolff, E.W., M. Bigler, M.A. J. Curran, J.E. Dibb, M.M. Frey, M. Legrand, and J.R. McConnell, The Carrington event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503, DOI: 10.1029/2012GL051603, 2012. [NASA ADS]
  • [88]Woods, T.N., G. Kopp, P.C. Chamberlin, Contributions of the solar ultraviolet irradiance to the total solar irradiance during large flares, J. Geophys. Res., 111, A10S14, DOI: 10.1029/2005JA011507, 2006. [PubMed]
  • [89]Yashiro, S., S. Akiyama, N. Gopalswamy, and R.A. Howard, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections, Astrophys. J. Lett., 650, L143, DOI: 10.1086/508876, 2006.
  • [90]Zhang, Z., I.G. Richardson, D.F. Webb, N. Gopalswamy, and E. Huttunen, et al., Solar and Interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005, J. Geophys. Res., 112, A10102, DOI: 10.1029/2007JA012321, 2007. [NASA ADS]
  文献评价指标  
  下载次数:98次 浏览次数:20次